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Abstract. We show that the Thurston seminorms of all finite covers of an aspher-
ical 3-manifold determine whether it is a graph manifold, a mixed 3-manifold or
hyperbolic.

1. Introduction

Let N be a 3-manifold. (Here, and throughout the paper all 3-manifolds are un-
derstood to be compact, orientable, connected, aspherical and with empty or toroidal
boundary.) Given a surface Σ with connected components Σ1, . . . ,Σk its complexity
is defined to be

χ−(Σ) :=
d∑
i=1

max{−χ(Σi), 0}.

Given a 3-manifold N and φ ∈ H1(N ;Z) the Thurston norm is defined as

xN(φ) := min{χ−(Σ) |Σ ⊂ N is a properly embedded surface, dual to φ}.

Thurston [Th86] showed that xN is a seminorm on H1(N ;Z). It follows from standard
arguments that xN extends to a seminorm on H1(N ;R). If N is hyperbolic, then N is
in particular atoroidal which implies easily that xN is a norm. On the other hand, the
seminorm is degenerate whenever there is a non-separating torus, e.g. if N = S1 ×Σ
where Σ is a surface of genus g ≥ 1. Given any seminorm x on a vector space V the
set {v ∈ V |x(v) = 0} is a subspace that we refer to as the kernel ker(x) of x.

In this paper we study to which degree the Thurston norm of all finite covers of a
3-manifold determines the type of the JSJ-decomposition of the 3-manifold. Hereby
we distinguish the following three mutually exclusive types of JSJ-decompositions a
prime 3-manifold N can have:

(1) The 3-manifold N is hyperbolic.
(2) The 3-manifold N is a graph manifold, i.e. all its JSJ-components are Seifert

fibered spaces.
(3) Following [PW12] we say that N is mixed if it is if the JSJ-decomposition is

non-trivial and if it contains at least one hyperbolic JSJ-component.

2010 Mathematics Subject Classification. 57M05, 57M10, 57M27.
Key words and phrases. 3-manifolds, Thurston norm, geometric structures on 3-manifolds.

1



2 MICHEL BOILEAU AND STEFAN FRIEDL

This question is related to the general study of properties or invariants of a 3-manifold
that can be determined from its finite covers, see for example [BF15], [BR15], [Le14]
[Wil16], [WZ17].

In order to state our first result we introduce a few more definitions. Given a
3-manifold N we write

b1(N) := dimR(H1(N ;R)),
k(N) := dimR(ker(xN)),

r(N) :=

{
0, if b1(N) = 0,
k(N)
b1(N)

, if b1(N) > 0.

Furthermore we write

C(N) := the class of all finite regular covers Ñ of N,

and

r̂(N) := sup
Ñ∈C(N)

r(Ñ)

The following proposition is well-known to the experts.

Proposition 1.1. Let N be an aspherical 3-manifold with empty or toroidal boundary.
Then N is hyperbolic if and only if r̂(N) = 0.

Proof. If N is hyperbolic, then all its finite covers are hyperbolic, and as we pointed
out above, in this case the seminorm is always a norm. On the other hand, if N is
not hyperbolic and aspherical, then by standard arguments, see e.g. [AFW15, (C.10)-

(C.15)] there exists a finite regular cover Ñ with a homologically essential torus. In

particular r(Ñ) > 0. �

It is harder to distinguish graph manifolds from manifolds with a non-trivial JSJ-
decomposition that contain at least one hyperbolic JSJ-component. In order to dis-
tinguish these two classes of 3-manifolds, we need to consider a wider class of finite
coverings, which we call subregular, since they correspond to subnormal subgroups

of the fundamental groups. We say that a covering f : N̂ → N is subregular if the
covering f can be written as a composition of coverings fi : Ni → Ni−1, i = 1, . . . , k

with Nk = N̂ and N0 = N , such that each fi is regular.
For a 3-manifold N we define:

Csub(N) := the class of all finite subregular covers N̂ of N ,

ρ(N) := inf
N̂∈Csub(N)

r(N̂).

ρ̂(N) := sup
Ñ∈C(N)

ρ(Ñ).

The following is the main result of this paper. It characterizes graph manifolds N
in term of the invariant ρ̂(N). It also gives a characterization of manifolds with non
vanishing simplicial volume (i.e. with at least one hyperbolic JSJ-component). This



THE VIRTUAL THURSTON SEMINORM OF 3-MANIFOLDS 3

characterization is analogous to the one for hyperbolic manifolds in Proposition 1.1,
but this time we use the invariant ρ(N) instead of r(N).

Theorem 1.2. Let N be an aspherical 3-manifold with empty or toroidal boundary.

(1) If N is a graph manifold, then ρ̂(N) = 1.
(2) If N is not a graph manifold, i.e. if N admits a hyperbolic piece in its JSJ-

decomposition, then ρ̂(N) = 0.

The proof of Theorem 1.2 relies on the work of Agol [Ag08, Ag13], Przytycki–Wise
[PW12] and Wise [Wi09, Wi12a, Wi12b].

The next corollary is a consequence of the combination of Proposition 1.1 and
Theorem 1.2:

Corollary 1.3. Let N be an aspherical 3-manifold with empty or toroidal boundary.
Then the Thurston norms of all finite subregular covers of N determine into which
of the following three categories N falls:

(1) graph manifold if and only if ρ̂(N) = 1,
(2) mixed manifold if and only if r̂(N) > ρ̂(N) = 0.
(3) hyperbolic manifold if and only if r̂(N) = 0.

Convention. Unless it says specifically otherwise, all 3-manifolds are assumed to be
compact, orientable, connected, and with empty or toroidal boundary. Furthermore
all surfaces are assumed to be compact and orientable. Finally, all subsurfaces of a
3-manifold are assumed to be properly embedded.
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versität Regensburg for their hospitality. The first author was supported by ANR
(projects 12-BS01-0003-01 and 12-BS01-0004-01), and the second author was sup-
ported by the SFB 1085 ‘Higher Invariants’ at the University of Regensburg, funded
by the Deutsche Forschungsgemeinschaft (DFG). Both authors also benefited from the
support and the hospitality of the Isaac Newton Institute for Mathematical Sciences
during the programme Homology Theories in Low Dimensional Topology supported
by EPSRC Grant Number EP/KO32208/1. Finally we wish to thank the referee for
pointing out several minor inaccuracies.

2. The calculation of ρ for graph manifolds

The following theorem immediately implies Theorem 1.2 (1).

Theorem 2.1. Let N be an aspherical graph manifold. Then given any ε > 0 there

exists a finite regular cover N̂ of N such that for any finite cover N of N̂ we have
r(N) > 1− ε.

The proof of Theorem 2.1 will require the remainder of this section. Given a
compact manifold X we write

c(X) := dimR (coker{H1(∂X;R)→ H1(X;R)}) .
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On several occasions we will need the following lemma.

Lemma 2.2. Let p : X̃ → X be a finite covering of a manifold X. Then c(X̃) ≥ c(X).

Proof. We consider the following commutative diagram of exact sequences

H1(∂X̃;R)

p∗

��

// H1(X̃;R)

p∗

��

// coker{H1(∂X̃;R)→ H1(X̃;R)}
p∗

��

// 0

H1(∂X;R) // H1(X;R) // coker{H1(∂X;R)→ H1(X;R)} // 0.

For the left two vertical maps we also have the transfer maps p∗ going from the
bottom to the top. These maps have the property that the compositions p∗ ◦ p∗ are

multiplication by [X : X̃], in particular the transfer maps are injective. Furthermore,
the transfer maps give rise to a commutative diagram on the left. A straightforward
diagram chase shows that the right vertical map also has a transfer map p∗ such that
the composition p∗ ◦ p∗ is injective. �

The next lemma is an immediate consequence of the Künneth Theorem.

Lemma 2.3. For any surface Σ we have c(S1 × Σ) = c(Σ).

We say that a graph manifold N is of product type if each JSJ-component Nv is a
product S1×Σv where Σv is a surface with χ(Σv) < 0 and with at least two boundary
components.

Proposition 2.4. Let N be a graph manifold that is not a Seifert fibered space and
that is not finitely covered by a torus bundle. Let C > 0. Then N is covered by a

graph manifold N̂ of product type such that for each JSJ-component Nv of N̂ we have
c(Nv) > C.

Proof. Let N be a graph manifold that is not a Seifert fibered space and that is
not finitely covered by a torus bundle. Let C > 0. By [AF13, Section 4.3] (see
also [AFW15, (C.10)] and [He87]) there exists a finite cover N ′ that is of product
type.

Furthermore, by [AF13, Proposition 5.22] there exists a prime p ≥ C and a finite
coverN ′′ ofN ′ such that for each JSJ-componentN ′′v = S1×Σ′′v the mapH1(N

′′
v ;Fp)→

H1(N
′′;Fp) is injective. We denote by N̂ the finite cover of N ′′ that corresponds to

the kernel of π1(N
′′) → H1(N

′′;Z) → H1(N
′′;Fp). In light of Lemma 2.3 it suffices

to prove the following claim.

Claim. Each JSJ-component of N̂ is of the form S1 × Σ where Σ is a surface with
c(Σ) > C.

By Proposition 1.9.2 and Theorem 1.9.3 of [AFW15] the JSJ-decomposition of

N̂ is the pull-back of the JSJ-decomposition of N ′′. It follows from this fact and
the above discussion of the chosen group homomorphism that each JSJ-component
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of N̂ is the finite cover of a manifold of the form S1 × Σ, where Σ is a surface
with at least two boundary components and with χ(Σ) < 0, and where we consider
the cover corresponding to the kernel of the group homomorphism π1(S

1 × Σ) →
H1(S

1×Σ;Fp). Note that this cover is of the form S1× Σ̂ where Σ̂ is the finite cover
of Σ corresponding to the kernel of the group homomorphism π1(Σ) → H1(Σ;Fp).
We write d = |H1(Σ;Fp)|. Since χ(Σ) < 0 we have d ≥ p2. We make the following
observations:

(1) By definition of ‘product type’ the surface Σ has at least two boundary com-
ponents. It follows that every boundary component of Σ has image of order
precisely p in H1(Σ;Fp). Therefore

b0(∂Σ̂) =
d

p
· b0(∂Σ).

(2) By the multiplicativity of the Euler characteristic we have

b1(Σ̂)− 1 = d · (b1(Σ)− 1).

(3) For any surface Σ we have

b0(∂Σ) = b1(∂Σ) ≤ b1(Σ) + 1.

We now obtain that

c(Σ̂) = dimR

(
coker{H1(∂Σ̂;R)→ H1(Σ̂;R)}

)
≥ b1(Σ̂)− b1(∂Σ̂)

≥ d(b1(Σ)− 1) + 1− b0(∂Σ̂)
≥ d(b1(Σ)− 1) + 1− d

p
(b1(Σ) + 1)

= d(b1(Σ)− 1) + 1− d
p
(b1(Σ)− 1)− 2d

p

≥ −(d− d
p
)χ(Σ)

≥ d− d
p
.

Hereby the first equality is given by definition, the following inequality is obvious,
the next inequality is given by (2) and the fact that the boundary components of a
surface are circles, the following equality stems from (1) and (3), the next equality is
purely algebraic, the following inequality is a consequence of χ(Σ) = b0(Σ) − b1(Σ)
and d ≥ p2, and the final inequality comes from χ(Σ) ≤ −1.

Summarizing we have shown that c(Σ̂) ≥ d− d
p
. But since d ≥ p2 we see that the

last term is at least p ≥ C. Thus we have shown that c(Σ̂) ≥ C. �

For the record we also mention the following elementary lemma.

Lemma 2.5. If f : N̂ → N is a finite covering of a 3-manifold, then there exists a
finite regular covering g : N → N that factors through f .

We are now in a position to prove Theorem 2.1.
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Proof of Theorem 2.1. Let N be an aspherical graph manifold and let ε > 0.

If N is covered by a torus bundle, then there exists a finite regular cover Ñ with

vanishing Thurston norm and with b1(Ñ) ≥ 1. In particular there exists a finite

regular cover Ñ with r(Ñ) = 1.

If N is Seifert fibered, then there exists a finite regular cover Ñ that is an S1-
bundle over a surface Σ. (See [AF13, Section 4.3] and [He87] for details.) Since N
is aspherical we know that Σ is not a sphere. The Thurston norm evidently vanishes
if Σ is a disk, or if it is an annulus, or if it is a torus, i.e. in these cases we have

r(Ñ) = 1. Thus we can now suppose that χ(Σ) < 0.

If Ñ is a non-trivial S1-bundle over Σ, then Σ is closed and it follows from χ(Σ) < 0,

that b1(Ñ) ≥ 1. Furthermore it is straightforward to see that all homology classes

are represented by tori, thus k(Ñ) = b1(Ñ) and we see that r(Ñ) = 1.

On the other hand, if Ñ is a trivial S1-bundle over Σ, then Ñ = S1 × Σ. In that
case it is well-known that k(S1 × Σ) = b1(Σ). Since χ(Σ) < 0 there exists a cover
S1 × Σ of S1 × Σ with r(S1 × Σ) > 1 − ε. Furthermore, using Lemma 2.5 we can
arrange that S1 × Σ is in fact a regular cover of N .

For the remainder of the proof we can now assume that N is neither covered by a
torus bundle nor is it Seifert fibered. It follows from Proposition 2.4 and Lemmas 2.2

and 2.5 that there exists a finite regular cover N̂ of N such that N̂ is of product type

and such such that for each JSJ-component Nv of N̂ we have c(Nv) >
1
ε
. Now let

N be a finite cover of N̂ . As above, the JSJ-decomposition of N is induced by the

JSJ-decomposition of N̂ . It is thus again of product type.
We denote the JSJ-components of N by N v = S1 × Σv, v ∈ V . It follows from

Lemma 2.2 and from the above that for each JSJ-component N v we have c(N v) >
1
ε
.

For each v we denote by fv ∈ H1(N ;Z) the element determined by the S1-factor.
It follows from [EN85, Proposition 3.5] and the standard calculation of the Thurston

norm for products S1 × Σ that for any φ ∈ H1(N ;R) the Thurston norm is given by

xN(φ) =
∑
v∈V

|φ(fv)| · χ−(Σv).

In particular, the Thurston norm vanishes if φ vanishes on all elements fv, v ∈ V . We
thus see that

k(N) ≥ b1(N)− |V |.

On the other hand, it follows from the Mayer–Vietoris sequence corresponding to the
decomposition of N along the JSJ-tori into the JSJ-components that

b1(N) ≥
∑
v∈V

dimR
(

coker{H1(∂N v;R)→ H1(N v;R)}
)
>

1

ε
· |V |.
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Putting the last two inequalities together we see that

1− r(N) ≤ b1(N)− k(N)

b1(N)
≤ |V |1

ε
|V |

= ε.

�

3. The calculation of ρ for non-graph manifolds

The goal of this section is to prove the following theorem, which together with
Theorem 2.1 implies Theorem 1.2, since the property of being aspherical and not
being a graph manifold is preserved by going to finite covers.

Theorem 3.1. Let N be an aspherical 3-manifold with empty or toroidal boundary
that is not a graph manifold. Then given any ε > 0, there exists a finite subregular
cover N of N such that r(N) < ε. In particular ρ(N) = 0.

We introduce the following definitions:

(1) Let N be a 3-manifold. An integral class φ ∈ H1(N ;Z) = Hom(π1(N),Z) is
called fibered if there exists a fibration p : N → S1 with φ = p∗ : π1(N) → Z.
We say N is fibered if N admits a fibered class.

(2) We say that a homomorphism φ : π → Z is large if φ is non-trivial and if it
factors through an epimorphism from π onto a non-cyclic free group.

In the following proofs we will several times make use of the followings facts:

(A) If p : M̃ → M is a finite cover and φ ∈ H1(M ;Z) is a fibered class, then

p∗φ ∈ H1(M̃ ;Z) is also fibered. In particular, if M is fibered, then M̃ is also
fibered.

(B) If p : M̃ →M is a finite cover and φ : π1(M)→ Z is large, then the composition

φ ◦ p∗ : π1(M̃)→ Z is also large.

Here the first statement is obvious and the second statement follows from the fact
that any finite-index subgroup of a non-cyclic free group is again a non-cyclic free
group.

One key ingredient in the proof of Theorem 3.1 is the Virtual Fibering theorem for
non-graph manifolds that is due to Agol [Ag08, Ag13], Przytycki–Wise [PW12] and
Wise [Wi09, Wi12a, Wi12b]. We refer to [AFW15] for precise references. (See also
[CF17, GM17] and [FK14] for alternative proofs.)

Theorem 3.2. (Virtual Fibering Theorem) Any aspherical 3-manifold that is
not a graph manifold admits a finite regular cover that is fibered.

Before we continue we want to clarify our language for the JSJ-decomposition. Let
N be an aspherical 3-manifold.

(1) We refer to the collection of the JSJ-tori together with the boundary tori as
the characteristic tori of N .
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(2) Given an aspherical 3-manifold N with boundary tori S1, . . . , Sk and JSJ-tori
T1, . . . , Tl we pick disjoint tubular neighborhoods Si× [−1, 0], i = 1, . . . , k and
Ti × [−1, 1], i = 1, . . . , l and we refer to the components of

N \
k⋃
i=1

Si × (−1
2
, 0] \

l⋃
i=1

Ti × (−1
2
, 1
2
)

as the JSJ-components of N . In particular, the complement of the union of
the JSJ-components consists of tubular neighborhoods of all the characteristic
tori.

On two occasions we will make use of the following lemma.

Lemma 3.3. Let N be a 3-manifold and let Nv be a JSJ-component of N . If Ñv is
a finite cover of Nv, then there exists a finite regular covering p : N ′ → N such that

each component of p−1(Nv) is a finite covering of Ñv.

For closed 3-manifolds this is a result of Wilton–Zalesskii [WZ10, Theorem A]. The
case of 3-manifolds with non-trivial boundary can easily be reduced to the closed case
(see e.g. [AFW15, (C.35)] for details).

We continue with the following lemma.

Lemma 3.4. Let N be a 3-manifold that is not a graph manifold. Then N admits
a finite regular cover N ′ such that there exists a hyperbolic JSJ-component N ′h with
c(N ′h) > 0.

Proof. Let Nh be a a hyperbolic JSJ-component of N . It follows from the work of Agol
[Ag13] and Wise [Wi09, Wi12a, Wi12b] (see also [AFW15, Flowchart 4] for details)
that π1(Nh) is large, i.e. π1(Nh) admits a finite index subgroup that surjects onto a
non-cyclic free subgroup. This implies, see e.g. [AFW15, (C.17)], that Nh admits a

finite-index cover Ñh with c(Ñh) > 0. Thus the lemma is an immediate consequence
of Lemmas 2.2 and 3.3. �

We also have the following lemma which might be of independent interest.

Lemma 3.5. Let N be a 3-manifold and let φ ∈ H1(N ;Z) be a non-trivial non-fibered
class. Then there exists a finite regular covering p : N ′ → N such that the composition
φ ◦ p∗ : π1(N ′)→ Z is large.

The proof of the lemma is closely related to the proof of the main theorems of [FV08]
and of [DFV14] and to [LR05, Proof of Theorem 3.2.4].

Proof. We start out with a simple observation. Let Σ be a surface (not necessarily
connected) in a 3-manifold dual to a class ψ ∈ H1(M ;Z) = Hom(π1(M),Z). We
denote by Γ(Σ) the graph whose vertices are precisely the components of M cut
along Σ and whose edges are the components of Σ with the obvious maps from the
edges to the vertices. Then the map ψ : π1(M) → Z factors through the canonical
epimorphism π1(M)→ π1(Γ(Σ)).
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Now we turn to the proof of the lemma. It is clear that it suffices to prove the
lemma for primitive classes. We pick a Thurston norm minimizing surface Σ dual to
φ that has the minimal number of components among all Thurston norm minimizing
surfaces dual to φ. In particular Σ has no components that are separating. It follows
easily that χ(Γ(Σ)) ≤ 0. If χ(Γ(Σ)) < 0, then we are done by the above observation.

Now suppose that χ(Γ(Σ)) = 0. Since φ is primitive and since Σ has the minimal
number of components it follows from the argument on [DFV14, p. 73] that Σ is
connected. By Przytycki–Wise [PW14, Theorem 1.1] the subgroup π1(Σ) ⊂ π1(M)
is separable, i.e. given any g 6∈ π1(Σ) there exists a homomorphism α : π1(M) → G
onto a finite group such that α(g) 6∈ α(π1(Σ)). Since Σ is not a fiber there exists
by [He76, Theorem 10.5] a g ∈ π1(M \ Σ × (0, 1)) that does not come from π1(Σ ×
{0}). It now follows from a standard argument, see e.g. [AFW15, (C.15)] or [LR05,
Proof of Theorem 3.2.4], that applying subgroup separability to this g allows to build
an epimorphism of π1(M) onto a free product with amalgamation of finite groups.
The fact that the target group is virtually a free group of rank two gives the desired
statement. �

Lemma 3.6. Let N be a hyperbolic 3-manifold and let α, β ∈ H1(N ;Z) be linearly
independent. Then there exist p, q ∈ Z \ {0} such that pα + qβ is not fibered.

Proof. We say that a rational class φ ∈ H1(N ;Q) is fibered if some integral multiple
nφ ∈ H1(N ;Z), n ∈ N is fibered. We denote by

B := {φ ∈ H1(N ;Q) |xN(φ) ≤ 1}

the norm ball of the Thurston seminorm. Since xN is a seminorm the set B is convex
and non-degenerate, the latter meaning that it is not contained in a lower-dimensional
subspace of H1(N ;Q). By assumption N is hyperbolic, this implies that the Thurston
seminorm on H1(N ;Q) is in fact a norm, i.e. B is compact. Thurston [Th86] showed
that B is a polyhedron with rational vertices. Furthermore he showed that the set of
fibered classes is given by the union of cones on certain open top-dimensional faces
of the polyhedron B.

Now we denote by V the subspace of H1(N ;Q) spanned by α and β. By assumption
V is 2-dimensional. The intersection B ∩V is a compact polytope in V with rational
vertices. Since the polytope B ∩ V is compact and non-degenerate it has at least
three vertices. By the aforementioned result of Thurston any class in the cone of any
of the vertices is not fibered. Since α and β are linearly independent and since there
are at least three vertices, and since the vertices are rational we can find non-zero
p, q ∈ Z \ {0} such that pα + qβ lies in the cone of one of the vertices, in particular
it is not fibered. �

In the following we will on several occasions make use of the following lemma which
is a straightforward consequence of Proposition 1.9.2 and Theorem 1.9.3 in [AFW15].
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Lemma 3.7. Let N be a prime 3-manifold and let Nh be a hyperbolic JSJ-component
of N . Then for each finite cover p : N ′ → N all the components of p−1(Nh) are
hyperbolic JSJ-components of N ′.

Lemma 3.8. Let N be a mixed 3-manifold. Then there exists a finite regular cover N ′

of N , a hyperbolic JSJ-component N ′h and a class φ ∈ H1(N ′;Z) such the restriction

of φ to N ′h is non-fibered but such that the restriction of φ to N \N ′h is fibered.

Proof. By Theorem 3.2, Lemmas 2.5 and 3.4 and Observation (A) there exists a
finite regular cover N ′ of N that admits a fibered class φ ∈ H1(N ′;Z) and that
admits a hyperbolic JSJ-component N ′h with the property that c(N ′h) > 0. This
implies that there exists a non-trivial homomorphism ψh : H1(N

′
h;Z) → Z that is

trivial on the image of any boundary component of N ′h. In particular ψh factors
through H1(N

′, ∂N ′;Z). We denote the resulting homomorphism

H1(N
′;Z)→ H1(N

′, N ′ \N ′h;Z) ∼= H1(N
′
h, ∂N

′
h;Z)

ψh−→ Z

by ψ.
We denote by φh the restriction of φ to N ′h. The classes φh and ψh in H1(N ′h;Z)

are linearly independent since the former, as a fibered class is non-trivial on each
boundary component of N ′h whereas the latter is by construction trivial on each
boundary component. By Lemma 3.6 there exist p, q ∈ Z\{0} such that pφh+ qψh is
a non-fibered class in H1(N ′h;Z). On the other hand, the restriction of pφh + qψh to

N \N ′h equals the restriction of pφh to N \N ′h. Since p 6= 0 this is a fibered class. �

Lemma 3.9. Let N be a mixed 3-manifold. Then there exists a finite subregular cover
N ′ of N , hyperbolic JSJ-components N ′1, . . . , N

′
k, k ≥ 1 of N ′, and a homomorphism

φ ∈ Hom(H1(N
′;Z),Z) = H1(N ′;Z) such that the restriction of φ to each N ′i is large

but such that the restriction of φ to N ′ \ (N ′1 ∪ · · · ∪N ′k) is fibered.

Proof. In light of Lemma 3.8 we can without loss of generality assume that there exists
a hyperbolic JSJ-component Nh of N and a class φ ∈ H1(N ′;Z) such the restriction

of φ to Nh is non-fibered but such that the restriction of φ to N \Nh is fibered.
By Lemmas 3.5 and 3.3 and Observation (B) there exists a finite regular cover

p : N ′ → N such that for one (and hence all) components N ′1, . . . , N
′
k of p−1(Nh) the

map p ◦ φ : π1(N
′
i)→ π1(Nh)→ Z factors through an epimorphism onto a non-cyclic

free group.
On the other hand it follows from Observation (A) that the restriction of p∗φ to

N ′ \ (N ′1 ∪ · · · ∪N ′k) = p−1(N \Nh) is fibered. �

Let N be a 3-manifold. We have the following notations:

(1) Given φ ∈ H1(N ;Z) = Hom(π1(N),Z) and n ∈ N we denote by φn : π1(N)→
Zn the homomorphism that is given by the composition of φ with the projec-
tion map Z→ Zn.
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(2) Given a homomorphism α : π1(N) → G we denote by Nα the corresponding
cover. If α is not surjective, then Nα consists of | coker(α)| copies of the finite
cover of N corresponding to ker(α).

We recall the following well-known lemma.

Lemma 3.10. Let N be a 3-manifold and let φ ∈ H1(N ;Z) = Hom(π1(N),Z) be a
fibered class. Then for all but finitely many primes p we have

b1(Nφp) ≤ 3 + xN(φ).

Proof. Let φ be a fibered class. We write φ = dψ where ψ is a primitive class and
d ∈ N. It is well-known that ψ is again fibered with xN(φ) = dxN(ψ). We denote
by S the fiber of the surface bundle corresponding to ψ. Surthermore we denote by
ϕ : π1(S) → π1(S) the corresponding monodromy. Also, given any automorphism γ
of π1(S) we denote by Z nγ π1(S) the corresponding semidirect product.

Now let n ∈ N. It is straightforward to see that

H1(Nψn ;Z) ∼= H1(nZ nϕ π1(S);Z)
∼= H1(Z nϕn π1(S);Z) ∼= Z⊕H1(S;Z)/(ϕn − id).

It follows that

b1(Nψn) ≤ rankZ(Z⊕H1(S;Z)/(ϕn − id)) ≤ 1 + b1(S) ≤ 3 + xN(ψ).

Now let p be a prime that is coprime to d. It follows that the map

π1(N)
d·ψ=φ−−−→ dZ→ Zp

is surjective. In particular Nφp = Nψp , and we thus see from the above that

b1(Nφp) = b1(Nψp) ≤ 3 + xN(ψ) ≤ 3 + xN(φ).

�

The following is the last lemma that we will need for the proof of Theorem 3.1.

Lemma 3.11. Let N be a 3-manifold and let φ : π1(N)→ Z be a large homomorphism
such that the restriction of φ to all boundary-components of N is non-trivial. Then
for all but finitely many primes p we have

c(Nφp) ≥ p− 1− 2b0(∂N).

Proof. Let N be a 3-manifold and let φ : π1(N)→ Z be a non-trivial homomorphism
that factors through an epimorphism α : π1(N) → F onto a non-cyclic free group F
and such that the restriction of φ to all boundary-components of N is non-trivial. By
a slight abuse of notation we denote the induced homomorphism F → Z by φ as well.

We denote the boundary components of N by T1, . . . , Tk. For each i ∈ {1, . . . , k}
we define di ∈ N by the condition that φ(π1(Ti)) = diZ. Similarly we define d by
φ(π1(N)) = dZ. By our hypothesis we know that d and all the di are non-zero.
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Now let p be any prime that is coprime to d and to d1, . . . , dk. This choice of p im-
plies that the restriction of φp to each boundary component is surjective. Furthermore
the homomorphism φp : F → Zp is surjective. We deduce that

b1(Nφp) ≥ rank(ker(φp : F → Zp)) ≥ p− 1.

Since the restriction of φp to each boundary component is surjective we see that the
induced covering of each boundary component is connected. Put differently, Nφp has
precisely k boundary components, each of which is a torus. We conclude that

c(Nφp) = rank
(
coker{H1(∂Nφp ;Z)→ H1(Nφp ;Z)}

)
≥ b1(Nφp)− b1(∂Nφp) ≥ p− 1− 2b0(∂N).

�

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let N be an aspherical 3-manifold that is not a graph mani-
fold. We need to show that given any ε > 0, there exists a finite subregular cover N
of N such that r(N) < ε.

So let N be an aspherical 3-manifold that is not a graph manifold and let ε > 0.
If N is hyperbolic then it follows from Proposition 1.1 that already r(N) = 0. Thus
henceforth we can restrict ourselves to the case that N is not hyperbolic, i.e. N is a
mixed manifold.

By Lemma 3.9 we can without loss of generality assume that there exists k ≥ 1
hyperbolic JSJ-components N1, . . . , Nk of N and a homomorphism φ ∈ H1(N ;Z) =
Hom(H1(N ;Z),Z) such the restriction of φ to each Ni, i = 1, . . . , k is large but such

that the restriction of φ to M := N \ (N1 ∪ · · · ∪Nk) is fibered.
By our definition of JSJ-components we see that M contains all characteristic tori

of N . Since φ|M is fibered it follows from [EN85, Section 4] that the restriction of φ
to a tubular neighborhood of each characteristic torus is a fibered class. It follows in
particular that the restriction of φ to each characteristic torus is non-zero. This in
turn implies that for almost all primes p the restriction of φp to each characteristic
torus is an epimorphism.

We write C := 3 + xM(φ|M). We denote by j the number of JSJ-tori of N and we
denote by b the number of boundary tori of N . By the above and by Lemmas 3.10
and 3.11 there exists a prime p such that the covering map f : N → N corresponding
to the homomorphism φp : π1(N)→ Zp has the following properties:

(1) The restriction of φp to each characteristic torus and to each JSJ-component
is an epimorphism. In particular the preimages of the JSJ-tori and the JSJ-
components under f are connected.

(2) For each i ∈ {1, . . . , k} we have c(f−1(Ni)) >
C+6j+2b

kε
.

(3) We have b1(f
−1(M)) ≤ C.

We claim that N has the desired property.
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It follows from the Mayer–Vietoris sequence applied to the decomposition of N
along the j tori that are given by the preimages of the JSJ-tori of N and from (3)
that

k∑
i=1

c(f−1(Ni)) ≤ b1(N) ≤ C + 2j +
k∑
i=1

b1(f
−1(Ni)).

The union of the f−1(Ni), i = 1, . . . , k has at most 2j + b boundary tori. It follows
easily that

k∑
i=1

b1(f
−1(Ni)) ≤ 4j + 2b+

k∑
i=1

c(f−1(Ni)).

Putting the above two inequalities together we obtain that

k∑
i=1

c(f−1(Ni)) ≤ b1(N) ≤ C + 6j + 2b+
k∑
i=1

c(f−1(Ni)).

On the other hand, it follows from the same Mayer–Vietoris sequence together with
the fact that the Thurston seminorm is in fact a norm on hyperbolic 3-manifolds that

k(N) ≤ b1(N)−
k∑
i=1

c(f−1(Ni)).

The combination of the last two inequalities together with (2) shows that

r(N) =
k(N)

b1(N)
≤ C + 6j + 2b∑k

i=1 c(f
−1(Ni))

< ε.

�
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