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Abstract. The twisted torsion of a 3-manifold is well-known to be zero when-
ever the corresponding twisted Alexander module is non-torsion. Under mild
extra assumptions we introduce a new twisted torsion invariant which is always
non-zero. We show how this torsion invariant relates to the twisted intersec-

tion form of a bounding 4-manifold, generalizing a theorem of Milnor to the
non-acyclic case. Using this result, we give new obstructions to 3-manifolds
being homology cobordant and to links being concordant. These obstructions
are sufficiently strong to detect that the Bing double of the figure eight knot

is not slice.

1. Introduction

In this paper we introduce new obstructions to links being concordant, which are
obtained from twisted torsion invariants. Recall that an m–component (oriented)
link is an embedded ordered collection of m disjoint (oriented) circles in S3. Given
an oriented link L we denote by −L the same link with the orientation of each
component reversed. We say that two m–component oriented links L0 = L1

0 ∪
· · · ∪ Lm0 and L1 = L1

1 ∪ · · · ∪ Lm1 are concordant if there exists a collection of
m disjoint, locally flat, oriented annuli A1, . . . , Am in S3 × [0, 1] such that ∂Ai =
Li0 × 0 ∪ −Li1 × 1, i = 1, . . . ,m. We say that an m–component link is slice if it is
concordant to the trivial m–component link. Equivalently a link is slice if it bounds
m disjoint locally flat disks in D4.

Let L ⊂ S3 be an oriented m–component link. Throughout this paper we write
EL = S3 \ νL, where νL is a tubular neighborhood of L, and π(L) = π1(EL).
Let ψ : H1(EL) → H be a non–trivial homomorphism to a free abelian group and
let α : π(L) → GL(R, k) be a representation with R a subring of C. We can then
consider the twisted homology module H1(EL;R[H]k) and we define

rank(L,ψ, α) = rankR[H]H1(EL;R[H]k),

where rankR[H]A denotes the dimension of A ⊗R[H] Q(H) over the quotient field
Q(H) of the integral domain R[H]. If rank(L,ψ, α) = 0, then it turns out that
EL is Q(H)k–acyclic, i.e., H∗(EL;Q(H)k) = 0, and we can define the torsion
τα⊗ψ(L) ∈ Q(H)× which is well–defined up to multiplication by an element of
the form ±dh where d ∈ det(α(π(L))) and h ∈ H. This invariant generalizes the
invariants introduced by Reidemeister, Milnor and Turaev and later by Lin and
Wada.

In general though rank(L,ψ, α) will be non–zero, for example this is the case for
any boundary link with at least two components (cf. Theorem 6.1) and the trivial
representation. Suppose that R ⊂ C is closed under complex conjugation. In
that case the ring R[H] has a natural involution given by complex conjugation and
h = h−1 for h ∈ H, this involution furthermore extends naturally to an involution
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on Q(H). Now suppose that α : π(L) → GL(R, k) is a unitary representation and
suppose that ψ is non–trivial on each meridian of L. Under these assumptions we
define a torsion invariant

τα⊗ψ(L) ∈ Q(H)×/N(Q(H))

even if rank(L,ψ, α) ̸= 0. Here N(Q(H)) denotes the subgroup of norms of the
multiplicative group Q(H)×, i.e., N(Q(H)) = {±qq | q ∈ Q(H)×}. The torsion
τα⊗ψ(L) viewed as an element in Q(H)×/N(Q(H)) is again well–defined up to
multiplication by an element of the form ±dh where d ∈ det(α(π(L))) and h ∈ H.
The invariant τα⊗ψ(L) is the twisted version of an invariant first introduced by
Turaev [Tu86, Section 5.1].

Remark. If K is a knot in S3, ψ : H1(EK)→ Z is an isomorphism, and α : π(L)→
GL(Z, 1) is the trivial representation, then rank(K,ψ, α) = 0 and τα⊗ψ(K) =
∆K(t)/(t − 1) (cf. [Tu01]). In general, if rank(L,ψ, α) = 0, then τα⊗ψ(K) can
be expressed in terms of twisted Alexander polynomials (cf. [KL99a] and [FK06]).
If α is the trivial representation and if rank(L,ψ, α) > 0, then the torsion is re-
lated to the Alexander polynomial defined using TorZ[H](H1(EL;Z[H])) (cf. [Tu86,
Theorem 5.1.1]). We expect that a similar result also holds in the twisted case.

We can now state our sliceness obstruction. First, if L is the m–component
unlink in S3 with meridians µ1, . . . , µm, then given α and ψ as above we will show
in Corollary 6.2 that rank(L,ψ, α) = k(m− 1) and

τα⊗ψ(L) = ±dh ·
m∏
i=1

det
(
id−ψ(µi)α(µi)

)−1 ∈ Q(H)×/N(Q(H))

with d ∈ det(α(π(L))) and h ∈ H. The following theorem says that the torsion
invariant of a slice link is given by the above expression if the representation factors
through a p-group. This is a special case of our main result, Theorem 4.2, which is
a more general result for link concordance.

Theorem 1.1. Let L be an m–component oriented slice link. Let R ⊂ C be a sub-
ring closed under complex conjugation and let α : π(L)→ GL(R, k) be a representa-
tion which factors through a finite group of prime power order. Let ψ : H1(EL)→ H
be an epimorphism onto a free abelian group which is non–trivial on each meridian
of L. Then

rank(L,ψ, α) = k(m− 1)

and

τα⊗ψ(L) = ±dh ·
m∏
i=1

det
(
id−ψ(µi)α(µi)

)−1 ∈ Q(H)×/N(Q(H))

for some d ∈ det(α(π(L))) and h ∈ H, where µ1, . . . , µm are meridians of L.

Remark. Let K ⊂ S3 be a knot. Fox and Milnor [FM66] have shown that if K
is slice, then the untwisted Alexander polynomial of K factors as ±tlf(t)f(t−1)
for some polynomial f(t) and some l ∈ Z. It is well–known that for a knot all
representations which factor through a p–group are necessarily abelian, in particular
one can easily show that the sliceness obstruction of Theorem 1.1 reduces to the
Fox–Milnor obstruction. On the other hand for knots Kirk and Livingston [KL99a]
used twisted torsion corresponding to ‘Casson–Gordon’–type representations to give
sliceness obstructions which go beyond Fox–Milnor. We also refer to [KL99b],
[Ta02], [HKL10], [Liv09] and also [FV10] for more on twisted Alexander polynomials
of knots and their relation to knot concordance.
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Remark. (1) If α is the trivial representation, then Theorem 1.1 was proved
in the one–variable case by Murasugi [Mu67] (cf. also [Ka77]) and in the
multi–variable case it was proved independently by Kawauchi [Ka78, The-
orem B] and Nakagawa [Na78]. These results were reproved by Turaev
[Tu86, Theorem 5.4.2] using torsion. See also a result of Florens [Fl04] on
the multi–variable Alexander polynomial of links bounding a surface with
Euler characteristic 1 in the 4–ball.

(2) Theorem 1.1 is related in spirit to [Fr05, Theorem 2.2] where a sliceness
obstruction for links is given using the Atiyah–Patodi–Singer eta invariant
and unitary representations factoring through p–groups. The metabelian
case was considered earlier by the first author and Ko [CKo99].

(3) We expect the obstruction of Theorem 1.1 to be closely related to the
discriminant part of Hirzebruch-type invariants developed by the first au-
thor [Ch10].

We prove a generalization of Milnor’s classical duality theorem for Reidemeister
torsion [Mi62] and use it as a key ingredient in the proof of the above sliceness
obstruction. For an even dimensional compact oriented manifold W endowed with
a homomorphism Z[π1(W )] → Q into a field Q with involution such that W is
Q–acyclic, Milnor proved that the Reidemeister torsion of M = ∂W over Q is of
the form qq, where q is the Reidemeister torsion of W . In particular, up to norms,
the torsion of M is trivial. A generalization of this to the twisted acyclic case is
given in [KL99a]. We generalize these prior results to the non-acyclic case: the
twisted torsion of an odd dimensional manifold M is equal to the determinant of
the twisted intersection pairing of a bounding even-dimensional manifold W (up
to norms). For a precise statement, see Theorem 2.4. We hope that this is of
independent interest and useful for further applications.

The paper is organized as follows. In Section 2 we introduce twisted torsion of
3-manifolds and links with non-acyclic twisted homology and we show how these
invariants relate to intersection forms of bounding 4-manifolds. In Section 3 we
study the torsion invariant of homology cobordant 3-manifolds and in Section 4 we
apply these results to link concordance where we prove our main theorem (which
implies Theorem 1.1). In Section 5 we discuss and to a certain degree classify
complex representations which factor through p–groups. In Section 6 we show how
to compute twisted torsion of boundary links using a boundary link Seifert matrix
and we discuss the behavior of our invariants for links which are boundary slice.
Finally in Section 7 we prove a formula for the twisted invariants of satellite links
and we use this formula to reprove the fact (first proved by the first author [Ch10])
that the Bing double of the Figure 8 knot is not slice.

In a subsequent paper, we will give further applications of our twisted torsion
invariants, concerning ordinary concordance of boundary links and unitary rep-
resentations. In particular we will address the apparent mismatch between the
vanishing of obstructions for boundary links which are slice respectively boundary
slice which we alluded to in the last remark of Section 6.2.

Conventions. The following are understood unless it says specifically otherwise:
(i) groups are finitely generated, (ii) manifolds are compact, orientable and con-
nected, (iii) rings are understood to be associative, commutative with unit element,
and (iv) homology and cohomology groups are taken with integral coefficients.

Acknowledgments. We would like to thank Baskar Balasubramanyam, David
Cimasoni, Taehee Kim, Vladimir Turaev and Liam Watson for helpful comments
and conversations. We also thank an anonymous referee for useful suggestions. The
first author was supported by the National Research Foundation of Korea (NRF)
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grants funded by Korean government(MEST) (Grant No. 2010–0011629 and 2010–
0029638).

2. Twisted torsion of 3-manifolds and links

In this section we define twisted torsion invariants of odd dimensional manifolds
for finite dimensional unitary representations for which the corresponding twisted
homology groups are not necessarily acyclic. We furthermore investigate twisted
torsion of odd dimensional manifolds cobounding a manifold, along the way we
generalize a theorem of Milnor to the nonacyclic case. In the last section we then
specialize to the case of 3-manifolds and link exteriors.

2.1. Twisted homology and Poincaré duality. Let (X,Y ) be a CW-pair with
π = π1(X), and ϕ : π → GL(k,R) a finite dimensional representation over a ring R.

Denote by p : X̃ → X the universal covering of X and write Ỹ = p−1(Y ). Recall

that π acts on the left of X̃ as the deck transformation group. We consider the

cellular chain complex C∗(X̃, Ỹ ) as a right Zπ-module via σ·g := g−1σ for a chain σ.
The Rk–coefficient cellular chain complex of (X,Y ) is defined to be

C∗(X,Y ;Rk) = C∗(X̃, Ỹ )⊗Zπ R
k.

where Rk is viewed as a (Zπ,R)–bimodule via the representation ϕ. We define the
ith twisted homology group to be the R-module

Hϕ
i (X,Y ;Rk) = Hi(C∗(X,Y ;Rk)).

If the representation is understood clearly, then we just write Hi instead of Hϕ
i .

Now assume that R is a ring with a (possibly trivial) involution . Given an R–
module A we denote by A the opposite R–module, i.e. A = A as abelian groups, and
the multiplication by r ∈ R on A is given by the multiplication by r on A. Finally
recall that a representation ϕ : π → GL(k,R) is called unitary if ϕ(g−1) = ϕ(g)t for
all g ∈ π.

We now have the following twisted Poincaré duality theorem (cf. also [Le94, p.
91], [FK06, Lemma 4.12], and [KL99a]). Here, given a vector space V over a field
Q, we denote the dual vector space by V ∗ = HomQ(V,Q).

Theorem 2.1. Let W be an n–manifold with ∂W = M ∪M ′, M and M ′ sub-
manifolds such that M ∩ M ′ = ∂M = ∂M ′. Let ϕ : π1(W ) → GL(k,Q) be a
unitary representation over a field Q with involution. Then there exists a natural
isomorphism

Hi(W,M ;Qk) ∼= Hn−i(W,M ′;Qk)∗

of Q–vector spaces.

The theorem can be proved along the same lines as the standard proof of Poincaré
duality. For the reader’s convenience we give an outline of the proof.

Proof. Choose a cell structure of (W,M) to define C∗(W̃ , M̃) and let D∗(W̃ , M̃ ′)
be the chain complex of the dual cell structure. Then the equivariant intersection
pairing (e.g., see [Le94, p. 91]) gives an isomorphism of chain complexes

C∗(W,M ;Qk) ∼= Dn−∗(W,M ′;Qk)∗.

Applying the universal coefficient theorem over Q, the conclusion follows. �

2.2. Basic definitions of twisted torsion.
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Torsion of a based chain complex. We begin by recalling the algebraic setup for
torsion invariants. Suppose C = {C∗} is a based chain complex over a field Q and
B = {B∗} is a basis for H∗(C), i.e., Bi is a basis of the Q–vector spaces Hi(C). The
torsion τ(C,B) ∈ Q× := Q \ {0} is defined as in [Tu01, Tu02]. (See also Milnor’s
classic introduction to torsion [Mi66], but note that we follow Turaev’s convention,
which gives the reciprocal of the torsion in [Mi66].) If H∗(C) is identically zero,
then we will just write τ(C) ∈ Q× for the torsion.

In the following theorem, we collect well-known algebraic properties of torsion
which will be useful later. In the theorem, given two bases b and b′ of a vector space,
we will denote the basis change matrix from b to b′ by (b|b′), as in Milnor [Mi66]
and Turaev [Tu01, Tu02].

Theorem 2.2. Suppose C is a based chain complex over Q and B = {Bi} is a
basis of H∗(C).

(1) Suppose B′ = {B′i} is another basis of H∗(C). Then

τ(C,B) = τ(C,B′) ·
∏
i

(Bi|B′
i)

(−1)i+1

.

(2) Let C ′ be the dual based chain complex given by C ′
i = (Cn−i)

∗ and B′ be the

basis of H∗(C
′) = Hn−∗(C)

∗ dual to B. Then τ(C,B) = τ(C ′,B′)(−1)n+1

.
(3) Suppose C∗ is acyclic. Choose a basis of the nth cycle submodule Zn =

Ker{Cn → Cn−1}, and view

C ′ = {Zn −→ Cn −→ · · · −→ C0 }
C ′′ = { · · · −→ Cn+2 −→ Cn+1 −→ Zn }

as acyclic based chain complexes (indexed so that C ′
0 = C0, C

′′
0 = Zn).

Then τ(C) = τ(C ′) · τ(C ′′)(−1)n .
(4) Suppose 0 → C ′ → C → C ′′ → 0 is a short exact sequence of based chain

complexes and B′, B, and B′′ are bases of H∗(C
′), H∗(C) and H∗(C

′′),
respectively. We view the associated homology long exact sequence as an
acyclic complex, say H, based by B, B′, B′′. Then

τ(C,B) = τ(C ′,B′) · τ(C ′′,B′′) · τ(H).

Twisted torsion of CW-complexes. Let (X,Y ) be a finite CW-pair with π = π1(X)
and let ϕ : π → GL(k,Q) be a representation over a field Q. Let B = {B∗} be a

basis of H∗(X,Y ;Qk). The universal cover (X̃, Ỹ ) has a natural cell structure, and

the chain complex C∗(X̃, Ỹ ) can be based over Zπ by choosing a lift of each cell of
(X,Y ) and orienting it. This, together with the standard basis of Qk, gives rise to
a basing of C∗(X,Y ;Qk) over Q. We can then define the twisted torsion

τϕ(X,Y,B) ∈ Q×

to be the torsion of C∗(X,Y ;Qk) with respect to B. We will drop B from the
notation if H∗(X,Y ;Qk) = 0.

Standard arguments (e.g., see [Mi66, Tu86, Tu01, Tu02]) show that τϕ(X,Y,B)
is well-defined up to multiplication by an element in ±det(ϕ(π)), and is invariant
under simple homotopy preserving B. By Chapman’s theorem [Chp74] the invariant
τϕ(X,Y,B) only depends on the homeomorphism type of (X,Y ). In particular
when (M,N) is a manifold pair, we can define τϕ(M,N,B) by picking any finite
CW–structure for (M,N).

Twisted torsion of odd dimensional manifolds. Let M be an odd dimensional man-
ifold with π = π1(M) and let ϕ : π → GL(k,Q) be a representation over a field Q.
In many interesting cases H∗(M ;Qk) will be nontrivial. For example the untwisted
multivariable Alexander module of a boundary link with at least two components is
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always non-torsion. In order to define an invariant for the nonacyclic case without
referring to a basis of homology, we now assume the following two conditions hold:

(1) Q is endowed with a (possibly trivial) involution, and ϕ is unitary.
(2) ∂M is Qk-acyclic, i.e., H∗(∂M ;Qk) = 0.

Since ϕ is unitary, we have the Poincaré duality isomorphism

Hi(M ;Qk) ∼= Hn−i(M,∂M ;Qk)∗ ∼= Hn−i(M ;Qk)∗

of Q–vector spaces, by Theorem 2.1 and by Condition (2). Since M is odd dimen-
sional, one can pick a basis B = {B∗} for H∗(M ;Qk) with the following property:
for each i, Bi is the dual basis of Bn−i via the above Poincaré duality isomorphism.
We call such a basis B = {B∗} a self-dual basis for H∗(M ;Qk).

Lemma 2.3. Suppose B and B′ are self-dual bases for H∗(M ;Qk). Then for some
q ∈ Q×, up to the indeterminacy of the torsion,

τϕ(M,B′) = τϕ(M,B) · qq.

Proof. Let (Bi|B′i) be the determinant of the base change matrix from Bi to B′i.
Then (Bn−i|B′n−i) = (Bi|B′i)

−1
. The desired conclusion follows immediately from

Theorem 2.2. �

We define the norm subgroup of Q× to be N(Q) = {±qq | q ∈ Q×}, and we say
f ∈ Q× is a norm when f ∈ N(Q). We define

τϕ(M) = τϕ(M,B) as an element in Q×/N(Q)

where B is a self-dual basis of H∗(M ;Qk). By Lemma 2.3 the invariant τϕ(M) is
well-defined up to multiplication by an element in ±det(ϕ(π1(M))). This invariant
was first introduced by Turaev [Tu86, Section 5.1] in the untwisted case.

In the following, given f ∈ Q, we will sometimes write τϕ(M)
.
= f ∈ Q×/N(Q),

to indicate that there exists a representative of τϕ(M) which equals f .

2.3. Twisted torsion and bounding manifolds. In this subsection we prove a
non-acyclic generalization of a well-known theorem of Milnor [Mi62, Theorem 2]
and of its twisted analogue due to Kirk and Livingston [KL99a, Theorem 5.1 and
Corollary 5.3].

Let W be a 2r–dimensional manifold with (possibly disconnected) boundary M .
Let ϕ : π1(W )→ GL(k,Q) be a unitary representation. Now consider the map

Hr(W ;Qk)
∼=−−→ Hr(W,M ′;Qk)∗

ι∗−−→ Hr(W ;Qk)∗

where the first map is the isomorphism given by Theorem 2.1 and the second map
is induced by ι : (W, ∅)→ (W,M). This map gives rise to a pairing

λ : Hr(W ;Qk) −→ Hr(W ;Qk) −→ Q

which is well-known to be (−1)r-hermitian. This pairing is called the equivariant
intersection form of (W,ϕ). This form is in general singular, in fact for any x ∈
Im{Hr(M ;Qk) → Hr(W ;Qk)} and y ∈ Hr(W ;Qk) we have λ(x, y) = λ(y, x) = 0.
In particular λ gives rise to a pairing on Hr(W ;Qk)/i∗Hr(M ;Qk) which turns out
to be non-singular.

We now pick a basis B = {v1, . . . , vs} for Hr(W ;Qk)/i∗Hr(M ;Qk) and we com-
pute det(λ(vi, vj)) ∈ Q×. Note that if we change the basis, then the determinant
of the form changes by a norm. Put differently, we obtain a well-defined invariant

Λ(W,ϕ) := det(λ(vi, vj)) ∈ Q×/N(Q).

Note that Λ(W,ϕ) = Λ(W,ϕ) since λ is (−1)r-hermitian.
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Theorem 2.4. Suppose W is a 2r–dimensional manifold with (possibly discon-
nected) boundary M . Let ϕ : π1(W )→ GL(k,Q) be a unitary representation. Then

τϕ(M) = Λ(W,ϕ) ∈ Q×/N(Q)

up to the indeterminacy ±det(ϕ(π1(M))).

In the following we will only apply the theorem to the case that Λ(W,ϕ) = 1,
but we hope that the general case is of independent interest.

To prove Theorem 2.4 we need the following duality of torsion, which is essen-
tially due to Milnor [Mi62]. (See also Kirk and Livingston [KL99a] for the twisted
case.)

Lemma 2.5. Suppose W is an n–manifold and M , M ′ are submanifolds of ∂W
such that ∂W =M∪M ′ andM∩M ′ = ∂M = ∂M ′. Suppose ϕ : π1(W )→ GL(k,Q)
is a unitary representation, B = {B∗} is a basis for H∗(W,M ;Qk), and B′ is the

dual basis for H∗(W,M
′;Qk) = Hn−∗(W,M ;Qk)

∗
. Then

τϕ(W,M,B) = τϕ(W,M ′,B′)(−1)n+1

.

Proof. The lemma follows immediately from the duality

Ci(W,M ;Qk) ∼= Dn−i(W,M ′;Qk)
∗

(see the proof of Theorem 2.1) and Theorem 2.2. �

Proof of Theorem 2.4. Choose a basis B forH∗(W ;Qk), and choose a self-dual basis

B′ for H∗(M ;Qk). Let B′′ be the basis of H∗(W,M ;Qk) = Hn−∗(W ;Qk)
∗
which

is dual to B. From (the proof of) Theorem 2.1, Theorem 2.2, and Lemma 2.5, it
follows that

τϕ(W,B) = τ0 · τϕ(M,B′) · τϕ(W,B)
(−1)n+1

where τ0 is the torsion of the acyclic chain complex (= homology long exact se-
quence)

· · · −→ Hi+1(W,M ;Qk) −→ Hi(M ;Qk) −→ Hi(W ;Qk) −→ Hi(W,M ;Qk) −→ · · ·
which is based by B, B′, B′′. We break the long exact sequence at i∗ : Hr(W ;Qk)→
Hr(W,M ;Qk) as in Theorem 2.2: let P be the image of i∗, choose a basis b for P ,
and let

C ′ = {P −→ Hr(W,M ;Qk) −→ · · · −→ H0(W,M ;Qk) },

C ′′ = { · · · −→ Hr(M ;Qk) −→ Hr(W ;Qk) −→ P }.
Then by Theorem 2.2 (3) we have τ0 = τ(C ′)τ(C ′′)(−1)r . Since B′ is self-dual,
C ′′ = {C ′′

i } is canonically isomorphic, as a based chain complex, with the dual

chain complex {C ′
3r+1−i

∗} of C ′ except C ′′
0 = P . Therefore we have

τ(C ′′) = τ(C ′)
(−1)r

·
(
b∗|b

)
where b∗ is the dual basis of b for P ∗. It follows that

τϕ(M,B′) = τϕ(W,B) · τϕ(W,B) · τ(C ′)−1 · τ(C ′)−1 ·
(
b|b∗

)(−1)r

.

Note that by definition we have
(
b|b∗) = Λ(W,ϕ) =: D ∈ Q×/N(Q). Since the

intersection form is (−1)r-hermitian, D = ±D and so D−1 ≡ D in Q×/N(Q). This
completes the proof. �

Remark. If W is Qk–acyclic, then D = 1 automatically and τ(C ′) = 1 in the above
proof. So τϕ(M) = qq up to ±det(ϕ(π1(M))), where q = τϕ(W ). This shows our
non-acyclic result specializes to Milnor’s theorem [Mi62, Theorem 2] and its twisted
analogue due to Kirk and Livingston [KL99a, Theorem 5.1 and Corollary 5.3].
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2.4. Twisted torsion of 3-manifolds and links. In this section we now spe-
cialize to the case of 3-manifolds. Let M be a 3-manifold with empty or toroidal
boundary (e.g. a link exterior). We write π = π1(M). Let ψ : π → H be an
epimorphism onto a nontrivial free abelian group H. Let R be a domain with in-
volution. We equip R[H] with the involution given by rh = rh−1 for r ∈ R and
h ∈ H. This extends to an involution on Q(H), the quotient field of R[H]. Now
let α : π → GL(k,R) be a unitary representation. Using α and ψ, we define a left
Z[π]-module structure on R[H]k := Rk ⊗R R[H] as follows:

g · (v ⊗ p) := (α(g) · v)⊗ (ψ(g)p)

where g ∈ π, v ∈ Rk and p ∈ R[H]. This extends to a Z[π]-module structure on
Q(H)k. It can be seen that α⊗ ψ : π → GL(k,Q(H)) is unitary since α is unitary.
We will several times make use of the following simple fact:

det((α⊗ ψ)(π)) ⊂ det(α(π)) ·H.
We now say that ψ : π → H is admissible if ψ restricted to any boundary component
ofM is nontrivial. Note that ψ is always admissible ifM is closed. If ψ is admissible
then Condition (2) in Section 2.2 is satisfied (e.g., see [KL99a, Proposition 3.5] and
[KL99a, Section 3.3]) and by the discussion of the previous section we thus obtain
an invariant

τα⊗ψ(M) ∈ Q(H)×/N(Q(H))

well-defined up to multiplication by an element of the form ±dh with d ∈ det(α(π))
and h ∈ H.

Remark. Note that if rank(H) is nonzero, then in the above setting we have
Hi(M ;Q(H)k) = 0 for i = 0, 3 (see e.g. [FK06, FK08]), so that it suffices to
choose B1 in the definition of torsion.

We now specialize even further, namely to the case of link exteriors. Let L ⊂ S3

be an orientedm–component link. We denote the exterior by EL and the (oriented)
meridians by µ1, . . . , µm. Using the basis µ1, . . . , µm we can now naturally identify
H1(EL;Z) with Zm. We say that a homomorphism ψ : Zm → H is admissible if ψ is
an epimorphism onto a nontrivial free abelian group H such that the epimorphism
is nontrivial on each subsummand of Zm = Z ⊕ · · · ⊕ Z. In this case the induced
map π1(EL)→ H is admissible in the above sense, so that we obtain a well-defined
torsion invariant

τα⊗ψ(L) := τα⊗ψ(EL) ∈ Q(H)×/N(Q(H)).

3. Homology cobordism and twisted torsion

In this section we investigate the behaviour of the twisted torsion under homol-
ogy cobordism. Recall that two 3–manifolds M and M ′ (possibly with nonempty
toroidal boundary) are said to be homology cobordant if there exists a 4–manifoldW
containingM andM ′ as submanifolds such that ∂W =M∪−M ′, ∂M =M∩M ′ =
∂M ′, and the inclusions M →W and M ′ →W induce isomorphisms on H∗(−;Z).

From now on, R ⊂ C is always assumed to be a subring closed under complex
conjugation. We denote by Pk(R, π) the set of representations π → GL(k,R)
factoring through a p-group. We will continuously make use of the well-known
fact that complex representations factoring through finite groups are necessarily
unitary.

For ψ : π1(M)→ H and α ∈ Pk(R, π), we define

rank(M,α, ψ) := dimQ(H)H
α⊗ψ
1 (M ;Q(H)k).

Our main result is the following:
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Theorem 3.1. Suppose two 3–manifolds M and M ′ are homology cobordant and
H is a free abelian group. Then there are bijections

Ψ: Hom(π1(M),H) −→ Hom(π1(M
′),H)

Φ: Pk(R, π1(M)) −→ Pk(R, π1(M
′))

such that for any ψ : π1(M)→ H, ψ is admissible if and only if Ψ(ψ) is admissible,
and in this case, for any α ∈ Pk(R, π1(M)), we have

rank(M,α, ψ) = rank(M ′,Φ(α),Ψ(ψ))

and

τα⊗ψ(M) = ±dhτΦ(α)⊗Ψ(ψ)(M ′) in Q(H)×/N(Q(H))

for some d ∈ det(α(π1(M))) = det((Ψ(α))(π1(M
′))) and h ∈ H.

Remark. In the proof of Theorem 3.1 we will see that for a given homology cobor-
dism W between M and M ′, the maps Ψ and Φ are both induced by π1(M) →
π1(W )← π1(M

′), in particular Ψ and Φ are ‘related’ bijections.

3.1. Stallings Theorem and representations through p-groups. We first
construct the bijections in Theorem 3.1 using Stallings’ theorem [Sta65].

Proof of Theorem 3.1, Part I. Suppose W is a homology cobordism between M
and M ′. Obviously the induced isomorphisms on H1(−;Z) gives rise to bijections

Hom(π1(M), H) ≈ Hom(π1(W ),H) ≈ Hom(π1(M
′),H).

Their composition will be Ψ in the above statement. Since ∂M = ∂M ′ it follows
that ψ : π1(M)→ H is admissible if and only if so is Ψ(ψ).

The bijection Φ is constructed as follows. For a group G, we denote the qth lower
central subgroup by Gq, which is defined inductively via G1 = G, Gq = [G,Gq−1].
For any α ∈ Pk(R, π1(M)), α factors through π1(M)/π1(M)q for some q, since any
p-group is nilpotent. By Stallings’ theorem [Sta65], we have

π1(M)/π1(M)q
∼=−−→ π1(W )/π1(W )q.

Therefore α induces a representation π1(W ) → GL(k,R) which factors through

π1(W )/π1(W )q. It is easily seen that this induces a bijection Pk(R, π1(M))
≈←−

Pk(R, π1(W )). Similarly forM ′ andW , and composing them, we obtain a bijection
Φ: Pk(R, π1(M))→ Pk(R, π1(M

′)).

3.2. Cohn local property and twisted coefficients. In our proof of the con-
clusion on torsions in Theorem 3.1 we will compute (the quotient of) the torsions of
M andM ′ in terms of the Q(H)k-coefficient intersection pairing of a cobordismW ,
appealing to Theorem 2.4. The key point is that one can prove that the intersection
pairing is trivial when W is a homology cobordism. This is done following a stan-
dard strategy, namely by controlling the size of the underlying Q(H)k-coefficient
homology of (W,M), appealing to a chain contraction argument originally due to
Vogel.

In Lemma 3.2 below we denote by ϵ : Z[π]→ Z the augmentation map given by
g 7→ 1, g ∈ π.

Lemma 3.2. Suppose π is a group and R is a domain with characteristic zero,
α ∈ Pk(R, π), and ψ : π → H is an epimorphism onto a nontrivial free abelian
group H. If A is a square matrix over Z[π] such that ϵ(A) is invertible over Z, then
(α⊗ ψ)(A) is invertible over Q(H).

Remark. Another way of phrasing Lemma 3.2 is to say that the Z[π]-module Q(H)k

is in fact a module over the Cohn localization of Z[π].
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Our proof of Lemma 3.2 depends heavily on a result originally due to Strebel
[Str74] and Levine [Le94].

Proof. Since R has characteristic zero and since the quotient ring of R gives the
same Q(H), we may assume that R contains Q. Suppose α factors through f : π →
P where P is a p-group. We have the following commutative diagram:

EndZ[π](Z[π]n) EndR(R[H]nk) R[H]

EndQ[P ](Q[P ]n) EndR(R
nk) R

//α⊗ψ

��
f

''OOOOOOOOOOOOOO
α

//det

��

ϵR

��

ϵR

// //det

where the induced maps are denoted by the same symbol, as an abuse of notation.
The augmentation R[H]→ R is denoted by ϵR.

Suppose A ∈ EndZ[π](Z[π]n) is an n × n matrix over Z[π] such that ϵ(A) is
invertible. Due to Strebel [Str74, Lemma 1.10] and Levine [Le94, Lemma 4.3] this
implies that f(A) is invertible over Q[P ], i.e., a unit in EndQ[P ](Q[P ]n). Since the
maps in the above diagram are multiplicative, it follows that α(A) is invertible.
Therefore det(α(A)) ̸= 0 and det((α ⊗ ψ)(A)) ̸= 0. It follows that A is injective
over R[H] and hence invertible over the field Q(H). �

A standard well-known chain contraction argument originally due to Vogel (see
also Levine [Le94, Proposition 4.2] and Cochran-Orr-Teichner [COT03]) shows the
following statement as a consequence of Lemma 3.2:

Lemma 3.3. Suppose (X,A) is a finite CW-pair, R is of characteristic zero, α ∈
Pk(R, π1(X)), and ψ : π1(X)→ H is an epimorphism onto a nontrivial free abelian
group. If H∗(X,A;Z) = 0, then H∗(X,A;Q(H)k) = 0.

Proof of Theorem 3.1, Part II. Suppose W is a homology cobordism between M
and M ′. Recall that we have constructed bijections

Pk(R, π1(M)) ≈ Pk(R, π1(W )) ≈ Pk(R, π1(M ′)),

Hom(π1(M), H) ≈ Hom(π1(W ),H) ≈ Hom(π1(M
′),H).

Fix α ∈ Pk(R, π1(M)) and ψ : π1(M)→ H, and as an abuse of notation, we denote
by α and ψ the corresponding representations and homomorphisms of π1(M

′) and
π1(W ) as well.

For convenience writeQ = Q(H). SinceH∗(W,M) = 0, we haveH∗(W,M ;Qk) =
0 by Lemma 3.3, and so H∗(M ;Qk) ∼= H∗(W ;Qk). Similarly for M ′ and W , and
from this the conclusion on the ranks follows immediately.

Now pick a self–dual basis B for H∗(M ;Qk) and pick a self–dual basis B′ for
H∗(M

′;Qk). Recall that H∗(∂M ;Qk) = H∗(∂M
′;Qk) = 0 since ψ is admissible

(see Section 2.4). In particular B gives rise to a basis for H∗(M,∂M ;Qk) which we
also denote by B. Note that B and B′ give rise to a self–dual basis for H∗(∂W ;Qk)
which we denote by B ⊕ B′.

Since H∗(W,M ;Qk) = 0, we have Λ(W,ϕ) = 1. Therefore, by Theorem 2.4, we
have τα⊗ψ(∂W )

.
= τα⊗ψ(∂W,B ⊕ B′) .

= 1. Applying Theorem 2.2 to the excision
short exact sequence

0 −→ C∗(M
′;Qk) −→ C∗(∂W ;Qk) −→ C∗(M,∂M ;Qk) −→ 0

and then applying Lemma 2.5 we obtain

(∗)
1 = τα⊗ψ(∂W,B ⊕ B′) = τα⊗ψ(M ′,B′) · τα⊗ψ(M,∂M,B) · τ0

= τα⊗ψ(M ′,B′) · τα⊗ψ(M,B) · τ0,
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where τ0 is the torsion of the homology long exact sequence

−→ Hi(M
′;Qk) −→ Hi(∂W ;Qk) −→ Hi(M,∂M ;Qk) −→ Hi−1(M

′;Qk) −→
which is based by B′,B′ ⊕ B and B. It follows easily that τ0 = 1. Therefore,
multiplying (∗) by τα⊗ψ(M,B), the conclusion follows. �

4. Link concordance and twisted torsion

It is well known that if two links are concordant, then their exteriors are homol-
ogy cobordant. More precisely, ifm-component links L and L′ in S3 are concordant,
then the exteriorW of a concordance has boundary EL∪m(S1×S1× [0, 1])∪−EL′

where we glue the i-th meridian (longitude) of L to the i-th meridian (longitude)
of L′ (Recall that links are assumed to be ordered collections of circles). Rounding
corners and extending collars outward, we can assume that ∂W = EL ∪ −EL′ and
∂EL = EL ∩ EL′ = ∂EL′ . Using Alexander duality it is straightforward to verify
that W is indeed a homology cobordism.

Therefore, we can apply the invariance of torsion (Theorem 3.1) immediately.
Furthermore, in case of links, we can make further observations on the correspon-
dence between representations. The main aim of this section is to provide a precise
description of this correspondence.

First, recall that given an oriented link L ⊂ S3 with m components, we can
naturally identify H1(EL) with Zm in such a way that the ith positive meridian
µi of L represents the ith standard basis of Zm. Therefore Hom(π1(EL), H) is
identified with Hom(Zm,H), where H denotes a nontrivial free abelian group as in
the previous sections. Suppose two links L and L′ are concordant, in particular the
concordance exteriorW is a homology cobordism between EL and EL′ . Recall that
in Theorem 3.1, we defined a bijection Ψ: Hom(π1(EL),H) → Hom(π1(EL′),H)
using H1(EL) ∼= H1(W ) ∼= H1(EL′). Since the meridians of L and L′ are freely
homotopic in W , it is easily seen that the bijection Ψ induces the identity on
Hom(Zm,H), that is, a homomorphisms π1(EL) → H and its image under Ψ are
identified with the same homomorphism Zm → H.

Recall that a homomorphism ψ : Zm → H is admissible if ψ is an epimorphism
which is nontrivial on each µi. In this case the corresponding map π1(EL) → H,
which will also be denoted by ϕ, is admissible in the sense of Section 2. Thus the
twisted torsion τα⊗ϕ(EL) can be defined for any unitary representation α : π1(EL)→
GL(k,R).

The correspondence between representations of π = π1(−) for concordant links
is better described in terms of representations of the lower central quotients π/πq.
It causes no loss of generality, since any representation of π factoring through a
p-group factors through π/πq for some q since p–groups are nilpotent. To proceed
we will need some technicalities discussed in the following subsection.

4.1. Concordance and lower central series. In this subsection we state some
known results and some folklore results on link concordance and lower central series.

Let L ⊂ S3 be an ordered, orientedm–component link. We denote the meridians
by µ1, . . . , µm and by abuse of notation we will denote the corresponding elements in
π1(EL) by µ1, . . . , µm as well. We now denote by F the free group on m generators
x1, . . . , xm. Following ideas of Levine (see [Le94, p. 101]) we define an F/Fq-
structure for L to be a homomorphism φ : π → F/Fq such that for any i = 1, . . . ,m
the element φ(µi) is a conjugate of xi. (Here recall that given a group π we denote
by πq the qth lower central subgroup.) Furthermore, we refer to a link L equipped
with an F/Fq–structure as an F/Fq–link.

A special automorphism of F/Fq is an automorphism h of F/Fq such that h(xi)
is a conjugate of xi for each i.
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Lemma 4.1. Let L be an ordered oriented m-component link. We write π =
π1(EL).

(1) Any F/Fq-structure φ : π → F/Fq induces an isomorphism π/πq → F/Fq.
(2) If φ and φ′ are F/Fq–structures for L, then there exists a special automor-

phism Θ such that φ′ = Θ ◦ φ.

Proof. We denote by γ : F → π the map which sends xi to µi. We also pick a map

ψ : F → F such that the map F
ψ−→ F → F/Fq agrees with φ ◦ γ. Finally note

that γ descends to a map F/Fq → π/πq which we denote by γ. We now have the
following commutative diagram, where the vertical maps are the obvious projection
maps:

F F

F/Fq π/πq F/Fq.

//ψ

���
��
� �
� �
��

��?
??

??
??

??
??

?

γ

���
� �
��
� �
� �

//γ //φ

It follows from Stallings’ theorem [Sta65] applied to ψ and from the commutativity
of the diagram that the map φ ◦ γ is an isomorphism. On the other hand it follows
from Milnor’s theorem [Mi57, Theorem 4] that γ is surjective. We now conclude
that φ is an isomorphism. This concludes the proof of (1).

The second statement is an immediate consequence of (1). �

Note that it follows from Lemma 4.1 (1) and [Mi57] that a link admits an F/Fq-
structure if and only if Milnor’s µ̄-invariants of the form µ̄(i1 · · · iq−1) defined in
[Mi57] vanish for L.

4.2. Obstructions to links being concordant. Now we are ready to derive the
following theorem:

Theorem 4.2. Suppose two m–component ordered links L and L′ are concordant,
ψ : Zm → H is an admissible homomorphism, and R is a subring of C closed under
complex conjugation. If φ and φ′ are arbitrary F/Fq–structures for L and L′,
respectively, then there exists a special automorphism Θ of F/Fq such that for any
α ∈ Pk(R,F/Fq) we have

rank(L,ψ, α ◦ φ) = rank(L′, ψ, α ◦Θ ◦ φ′)

and

τ (α◦φ)⊗ψ(L) = ±dh · τ (α◦Θ◦φ′)⊗ψ(L′) ∈ Q(H)×/N(Q(H))

for some d ∈ det(α(F/Fq)) and h ∈ H.

Proof. Let W be the exterior of a concordance, E = EL, and E′ = EL′ . Since
H∗(E) ∼= H∗(W ) ∼= H∗(E

′) we can apply Stallings’ theorem [Sta65] to conclude
that the inclusion maps induce isomorphisms

π1(E)/π1(E)q
∼=−−→ π1(W )/π1(W )q

∼=←− π1(E′)/π1(E
′)q.

Observe that the composition sends meridians of L to (conjugates of) meridians
of L′. It follows that the composition

π1(E
′) −→ π1(E

′)/π1(E
′)q ∼= π1(W )/π1(W )q ∼= π1(E)/π1(E)q −→ F/Fq

gives an F/Fq–structure on L′ which we denote by φ′′.
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For α ∈ Pk(R,F/Fq), α◦φ ∈ Pk(R, π1(E)) corresponds to α◦φ′′ ∈ Pk(R, π1(E′))
under the bijection Φ in Theorem 3.1, by the definition of F/Fq–concordance and
the definition of Φ (see Subsection 3.1). Now by Theorem 3.1, we have

rank(L,ψ, α ◦ φ) = rank(L′, ψ, α ◦ φ′′)

τ (α◦φ)⊗ψ(L) = τ (α◦φ
′′)⊗ψ(L′).

By Lemma 4.1 there exists a special automorphism Θ such that φ′′ = Θ ◦ φ′.
The theorem now immediately follow from these observations. �

The following corollary is equivalent to Theorem 1.1 given in the introduction.

Corollary 4.3. Suppose L is an m–component slice link, ψ : Zm → H is an admis-
sible homomorphism, and R is a subring of C closed under complex conjugation.
Then for any α ∈ Pk(R, π(L)), we have rank(L,ψ, α) = k(m− 1) and

τα⊗ψ(L) = ±dh ·
m∏
i=1

det(id−α(µi)ti)−1 ∈ Q(H)×/N(Q(H))

for some d ∈ det(α(π(L))) and h ∈ H.

Proof. Write π = π1(EL). Let α ∈ Pk(R, π(L)). By definition α factors through
a p-group. Since p-groups are nilpotent it follows that there exists a q such that
α factors through π/πq. Since L is slice, by the proof of Theorem 4.2 there exists

an F/Fq–structure φ : π → π/πq
∼=−→ F/Fq on L. In particular there exists α0 ∈

Pk(R,F/Fq) such that α = α0 ◦ φ. Since L is concordant to the trivial link,
we may by Theorem 4.2 assume without loss of generality that L is already the
trivial link. (Precisely speaking, this requires the change of α0 to α0 ◦ Θ for some
special automorphism Θ of F/Fq, but this can be ignored since det(id−α(µi)ti) =
det(id−α0(xi)ti) is left unchanged when xi is replaced with its conjugate.) The
corollary now follows from the explicit calculation for the unlink, which will be done
in Theorem 6.2. �

5. Representation theory of p–groups

In this section we collect a few basic facts of the theory of representations fac-
toring through p-groups. This summary will be useful in the later discussion of
examples.

Given k we denote by P (k) ⊂ GL(C, k) the subgroup of permutation matrices,
i.e. matrices with exactly one non–trivial entry in each row and in each column,
and all the non–trivial entries are equal to one. Let R ⊂ C be a subring which
is closed under complex conjugation. We then write D(R, k) ⊂ GL(R, k) for the
subgroup of diagonal matrices.

Proposition 5.1. Let π be a group with generators g1, . . . , gn. Let α : π → GL(C, k)
be a representation. We write Xi = α(gi), i = 1, . . . , n. Let p be a prime. Then α
factors through a p–group if and only if there exists a matrix Q ∈ GL(C, k) such that
for i = 1, . . . , n we can write QXiQ

−1 = PiDi with Pi ∈ P (k) and Di ∈ D(C, k)
such that

(1) P1, . . . , Pn generate a subgroup of p–power order, and
(2) the diagonal entries of D1, . . . , Dn are p–power roots of unity.

Proof. We will say that a matrix D is p–diagonal if D is diagonal and if all the
diagonal entries are p–power roots of unity. We will several times make use of the
following two basic observations:

(i) If P, P ′ ∈ P (k) and D,D′ ∈ D(R, k) with PD = P ′D′, then P = P ′ and
D = D′.
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(ii) Let P, P ′ ∈ P (k) and D,D′ ∈ D(R, k), then PDP ′D′ = PP ′ · P ′−1DP ′D′

and P ′−1DP ′D′ is a diagonal matrix, furthermore, if D,D′ are p–diagonal,
then P ′−1DP ′D′ is also p–diagonal.

Now assume that we have a representation α : π → GL(C, k) with the following
property: there exists a matrix Q ∈ GL(C, k) such that for i = 1, . . . , n we can
write Qα(gi)Q

−1 = PiDi with Pi ∈ P (k), Di ∈ D(C, k) which satisfy conditions
(1) and (2).

We claim that α(π) is a p–group. Without loss of generality we can assume
that Q is the identity. Let Y be any element in the group α(π), we can write
Y = (Pi1Di1)

ϵ1 · · · · · (PirDir )
ϵr for some ij ∈ {1, . . . , n}, ϵj ∈ {±1}. We have to

show that Y has p–power order. Let X = P ϵ1i1 · · · · · P
ϵr
ir
. By assumption Xps = id

for some s. Using the above observations we can write

Y p
s

=
(
(Pi1Di1)

ϵ1 · · · · · (PirDir )
ϵr
)ps

= Xps ·D

for some p–diagonal matrix D. It follows that Y p
s

= D (and hence Y ) has p–power
order. This shows that α(π) is a p–group.

Now let α : π → GL(C, k) be a representation which factors through a p–group
P . We write Xi = α(gi), i = 1, . . . , n. By [We03, Corollary 4.9] any representation
α : P → GL(C, k) of the p-group P is induced from a representation of degree 1.
This means that there exists a finite index subgroup Q ⊂ P and a one–dimensional
representation Q → GL(C, 1) such that α is given by the natural P–left action
on C[P ] ⊗C[Q] C. Note that the one–dimensional representation is necessarily of
p–power order. Now pick representatives p1, . . . , pl for P/Q. These representatives
defines a basis for C[P ]⊗C[Q]C, and writing α with respect to this basis we see that
α is of the required type. �

6. Boundary links

Boundary links form an important subclass of links which has been intensely
studied over the years. In this section we will show how to calculate twisted invari-
ants for boundary links and we will study the twisted invariants of boundary links
that are ‘boundary slice’.

6.1. Invariants of boundary links.

Definition. A boundary link is an m–component oriented link in S3 which has m
disjoint Seifert surfaces, i.e. there existm disjoint oriented surfaces V1, . . . , Vm ⊂ S3

such that ∂(Vi) = Li, i = 1, . . . ,m. We refer to such a disjoint collection of Seifert
surfaces as a boundary link Seifert surface.

Remark. Not every link is a boundary link. For example it is clear that a bound-
ary link has trivial linking numbers. Furthermore, Milnor’s [Mi57] µ̄–invariants are
trivial for a boundary link, and in fact trivial for any link concordant to a boundary
link. Cochran and Orr [CO90, CO93] showed that there also exist links with van-
ishing µ̄–invariants which are not concordant to a boundary link (cf. also [GL92]
and [Le94]).

Throughout this section let F be the free group on the generators x1, . . . , xm.
An F–link is a pair (L,φ) where L is an oriented m–component link in S3 and
φ : π(L) → F is an epimorphism sending an ith meridian to xi. Note that φ gives
rise to a map from EL to the wedge of m circles, and by a standard transversality
argument such a map then gives rise to a boundary link Seifert surface. Con-
versely, the existence of a boundary link Seifert surface V for L produces such an
epimorphism π(L)→ F by the Thom-Pontryagin construction.
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Given an oriented boundary link L with disjoint oriented surfaces V1, . . . , Vm ⊂
S3 we can define the ‘boundary link Seifert matrix’ as follows: Let gi be the genus
of Vi. For i = 1, . . . ,m pick a basis vi,1, . . . , vi,2gi for H1(Vi). For k, l ∈ {1, . . . ,m}
we define Akl to be the 2gk × 2gl–matrix given by (Aij)kl = lk(vi,k, (vj,l)+) where
(vj,l)+ denotes the positive push–off of vj,l from Vj into S3 \ V . We now view
(Aij)kl as an m×m–matrix of matrices and we refer to it as a boundary link Seifert
matrix. We refer to [Lia77] and [Ko85, Ko87] for details and for more information
on boundary link Seifert matrices.

We now turn to the computation of twisted invariants of boundary links. Let
(L,φ) be an F -link and A = (Aij) a corresponding boundary link Seifert matrix
where Aij is an ri × rj–matrix. Let r =

∑m
i=1 ri and

T := diag(t1, . . . , t1︸ ︷︷ ︸
r1

, . . . , tm, . . . , tm︸ ︷︷ ︸
rm

).

We view At − AT as an r × r–matrix over R[t±1
1 , . . . , t±1

m ]. Let ψ : Zm → H be
an admissible epimorphism to a nontrivial free abelian group H and let α : F →
GL(R, k) be a representation. Note that all entries of the matrix (α⊗ψ)(At−AT )
are sums of monomials in one variable, we can therefore unambiguously define the
matrix (α⊗ψ)(At−AT ) to be the rk×rk–matrix over R[H] given by replacing each

summand atji of an entry of At − AT by the matrix aα(xi)
jψ(ti) ∈ GL(R[H], k).

(Here and throughout this section we will identify the additive group Zm with the
multiplicative group generated by t1, . . . , tm.)

Theorem 6.1. Let (L,φ) be an F–link. Let A be a boundary link Seifert matrix
corresponding to Seifert surfaces given by φ. Let ψ : π(L) → H be an admissible
epimorphism to a nontrivial free abelian group H. Let R ⊂ C be a subring closed
under complex conjugation, and let α : π(L)→ GL(R, k) be a unitary representation
which factors through the epimorphism φ. Then the following hold:

(1) We have rank(L,ψ, α) ≥ k(m−1) and equality holds if and only if det((α⊗
ψ)(At −AT )) ̸= 0,

(2) If rank(L,ψ, α) = k(m− 1), then

τα⊗ψ(L)
.
= det((α⊗ ψ)(At −AT )) ·

m∏
i=1

det(id−α(xi)ti)−1 ∈ Q(H)×

N(Q(H))
.

(3) If α factors through a p–group, then rank(L,ψ, α) = k(m− 1).

Proof. Let V1 ∪ · · · ∪ Vm ⊂ EL be a properly embedded boundary link Seifert
surface for L corresponding to φ together with bases vi,1, . . . , vi,2gi for H1(Vi) such
that (Aij) is the corresponding Seifert matrix, i.e. (Aij)kl = lk(vi,k, (vj,l)+). Let
C = S3\(νV1∪· · ·∪νVm). Note that the induced maps π1(Vi)→ F, i = 1, . . . ,m and
π1(C)→ F are trivial, in particular α and ψ restricted to π1(Vi), i = 1, . . . ,m and
π1(C) are trivial. We therefore get the following exact Mayer–Vietoris sequence:

m⊕
i=1

H1(Vi)⊗Z R[H]k −→ H1(C)⊗Z R[H]k −→ H1(EL;R[H]k)

−→
m⊕
i=1

H0(Vi)⊗Z R[H]k −→ H0(C)⊗Z R[H]k −→ H0(EL;R[H]k) −→ 0

(We refer to [FK06, Section 3] for details.) Now let ci,1, . . . , ci,2gi , i = 1, . . . ,m be
the basis for H1(C) dual to the basis vi,1, . . . , vi,2gi , i = 1, . . . ,m, i.e. lk(ci,j , vk,l) =
δik · δjl. Using these bases it is well–known that the map

H1(Vi)⊗Z R[H]k −−→ H1(C)⊗Z R[H]k



16 JAE CHOON CHA AND STEFAN FRIEDL

is represented by (α ⊗ ψ)(At − AT ). We write n =
∑m
i=1 2gik. Note that (α ⊗

ψ)(At −AT ) is an n× n-matrix. We now have

rank(L,ψ, α) = dimQ(H)H1(EL;Q(H)k)

= dim

(
m⊕
i=1

H0(Vi)⊗Z Q(H)k

)
− dim

(
H0(C)⊗Z Q(H)k

)
+ dim

(
H0(EL;Q(H)k

)
+ dimQ(H)(H1(C)⊗Q(H)k)

− rank((α⊗ ψ)(At −AT ))
= km− k + 0 + n− rank((α⊗ ψ)(At −AT )).

In particular rank(L,ψ, α) ≥ km− k, and equality holds if and only if the rank of
the n× n-matrix (α⊗ ψ)(At −AT ) is equal to n. This proves (1).

We now turn to the calculation of τα⊗ψ(L). Suppose that rank(L,ψ, α) = k(m−
1). For i = 1, . . . ,m we pick a point ui ∈ Vi. Note that {ui, {vi,1, . . . , vi,2gi}} defines
a basis for the free Z–module H∗(Vi) and

τ(Vi; {ui, {vi1, . . . , vi2gi}}) = ±1 ∈ Z
since ±1 are the only units in the ring Z. We now denote by e1, . . . , ek the standard
basis of Qk. For i = 1, . . . ,m we then let

Vi0 = {ui ⊗ ej}j=1,...,k,

Vi1 = {vi,j ⊗ el}j=1,...,2gi,l=1,...,k.

Note that for i = 1, . . . ,m the set {Vi0,Vi1} defines a basis for the free Q(H)–
module H∗(Vi)⊗Z Q(H)k and

τ(Vi; {Vi0,Vi1}) = τ(Vi; {ui, {vi,1, . . . , vi,2gi}})k = ±1 ∈ Z.
We now also pick a point b ∈ C and for i = 1, . . . ,m− 1 we denote by Si the result
of gluing Vi ×−1 and Vi × 1 together along ∂Vi × [−1, 1]. Note that S1, . . . , Sm−1

are a basis for H2(C). We now let

C0 = {p⊗ ej}j=1,...,k,

C1 = {ci,j ⊗ el}i=1,...,m,j=1,...,2gi,l=1,...,k,

C2 = {Si ⊗ ej}i=1,...,m−1,j=1,...,k.

Note that the set {C0, C1, C2} defines a basis for the free Q(H)–module H∗(C) ⊗Z
Q(H)k and a similar argument as above shows that

τ(C; {C0, C1, C2}) = ±1 ∈ Z.
Now note that rank(L,ψ, α) = k(m− 1) implies by (1) that the map

m⊕
i=1

H1(Vi)⊗Z Q(H)k −→ H1(C)⊗Z Q(H)k

is injective. This implies that the map

H2(C)⊗Q(H)k −→ H2(EL;Q(H)k)

is an isomorphism, and we denote by B2 be the image of C2 under this isomorphism.
By a slight abuse of notation we also write C2 := {Si ⊗ ej}i=1,...,m−1,j=1,...,k.

For i = 1, . . . ,m we now write Pi = id−α(xi)ti. Furthermore for i = 1, . . . ,m we
let µi be a meridian of Li which is based at b and which intersects Vi geometrically
once in the positive direction and which is disjoint from Vj , j ̸= i.

We now denote by p : ẼL → EL the F–cover corresponding to φ. We pick a
point b̃ over b and for i = 1, . . . ,m we denote by µ̃i the component of p−1(µi) such

that ∂µ̃i = b̃− xi · b̃.
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Claim. For i ∈ {1, . . . ,m− 1} and j ∈ {1, . . . , k} we define

b′ij := µ̃i ⊗ P−1
i ej − µ̃i+1 ⊗ P−1

i+1ej .

Then the following hold:

(1) {b′ij} is a basis for H1(EL;Q(H)k),
(2) for any i, j, k and l we have

b′ij · (Sr ⊗ es) =

{
δjs, if r = i,

−δjs, if r = i+ 1.

(3) for any i and j we have

r(b′ij) = ui ⊗ P−1
i ej − ui+1 ⊗ P−1

i+1ej .

In order to prove the claim, first note that

∂(µ̃i ⊗ ej) = (1− xi)b̃⊗ ej
= b̃⊗ (α⊗ ψ)(1− xi)ej
= b̃⊗ (id−α(xi)ti)ej = b̃⊗ Piej .

It therefore follows that

∂(b′ij) = b̃⊗ PiP−1
i ej − b̃⊗ Pi+1P

−1
i+1ej = 0.

The calculation of b′ij · (Sr ⊗ es) follows easily from the definitions. This shows
in particular that the b′ij are linearly independent and hence form a basis for

H1(EL;Q(H)k) Finally it is straightforward to verify that

r(b′ij) = ui ⊗ P−1
i ej − ui+1 ⊗ P−1

i+1ej .

This concludes the proof of the claim.
For i = 1, . . . ,m− 1 and j = 1, . . . , k we now let

bij =
m−1∑
r=i

b′rj .

We write C1 := {bij}. It follows immediately from the above claim that C1 is a basis,
and that C1 is dual to C2. We now consider the following short exact sequence of
Q(H)–complexes:

0 −→
m⊕
i=1

C∗(Vi;Q(H)k) −→ C∗(C;Q(H)k) −→ C∗(EL;Q(H)k) −→ 0

together with the above bases. It follows from Theorem 2.2 (4) together with the
above calculations and from the definition of torsion that

τα⊗ψ(L, {B1,B2}) = det((α⊗ ψ)(At −AT )) · τ(C),

where C is the following complex with the canonical bases:

0 −→ Q(H)k(m−1) f−−→ Q(H)km
g−−→ Q(H)k −→ 0

f =


P−1
1 0 . . . 0

−P−1
2 P−1

2 . . . 0

0
. . .

. . .
...

0 . . . −P−1
m−1 P−1

m−1

0 . . . 0 −P−1
m


g =

(
P1 . . . Pm

)
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It now follows (cf. e.g. [Tu01, Theorem 2.2]) that

τ(C) =
m∏
i=1

det(Pi)
−1.

This concludes the proof of the second statement of the theorem.
Finally note that det(A−At) = ±1 (see [Ko87]), in particular if α factors through

a p–group, then it follows immediately from Theorem 3.2 that det((α ⊗ ψ)(At −
AT )) ̸= 0. This concludes the proof of part (3) of the theorem. �

The following corollary follows immediately from taking A to be the trivial ma-
trix.

Corollary 6.2. Let L ⊂ S3 be the m–component unlink in S3 with meridians
µ1, . . . , µm. Let ψ : Zm → H be an admissible homomorphism. Let R ⊂ C be
a subring closed under complex conjugation, and let α : π(L) → GL(R, k) be a
unitary representation. Then

rank(L,ψ, α) = k(m− 1)

and

τα⊗ψ(L) = ±dh ·
m∏
i=1

det
(
id−ψ(µi)α(µi)

)−1 ∈ Q(H)×/N(Q(H))

with d ∈ det(α(π(L))) and h ∈ H.

6.2. Boundary slice links. Let L ⊂ S3 be an m–component boundary link. We
say L is boundary slice if there exist disjointly embedded 3–manifoldsW1, . . . ,Wm ∈
D4 such that for i = 1, . . . ,m, the boundary ∂Wi is the union of a Seifert surface
and a slice disk for Li. It is known that a boundary slice link is boundary slice with
respect to any boundary link Seifert surface. We note that boundary slice links are
slice; it is a long-standing open question whether the converse holds for boundary
links.

Obstructions to being boundary slice has been studied by several authors, in-
cluding Cappell and Shaneson [CS80], Duval [Du86], Ko [Ko87], Mio [Mi87], Shei-
ham [Sh03, Sh06]. The following torsion obstruction to being boundary slice is a
consequence of these works.

Theorem 6.3. Let (L,φ) be an m-component F -link which is boundary slice. Let

α : π(L)
φ−→ F → GL(R, k) be a unitary representation where R ⊂ C is a subring

closed under complex conjugation. Let ψ : Zm → H be an admissible homomor-
phism. If rank(L,ψ, α) = k(m− 1), then

τα⊗ψ(L) = ±dh ·
m∏
i=1

det
(
id−ψ(µi)α(µi)

)−1 ∈ Q(H)×/N(Q(H))

for some d ∈ det(α(π(L))) and h ∈ H.

Proof. Let V = V1 ∪ · · · ∪ Vm be a Seifert surface for L corresponding to φ and
let (Aij) be the corresponding boundary link Seifert matrix. We denote by gi the
genus of Vi. By the first remark of this subsection, there are disjointly embedded
3–manifolds Wi in D4 such that ∂Wi = Vi ∪ (a slice disk for Li). By Ko [Ko87,
Lemma 3.3], it follows that (Aij) is metabolic. This means that for i = 1, . . . ,m
there exists an invertible 2gi × 2gi matrix Pi such that each PiAijP

t
j is of the form(

0 C
D E

)
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where 0 is a gi × gj-matrix. (In fact Ko [Ko87] has shown that in higher odd
dimensions A being metabolic is in fact a sufficient condition for being boundary
slice.) It follows easily that (α⊗ψ)(At−AT ) is equivalent to a matrix of the form

±h
(

0 X

X
t

Y

)
where h ∈ H and X and Y are matrices over R[H] of size k

∑
i gi. It now follows

that

det((α⊗ ψ)(At −AT )) = ±udet(R) · det(Rt) = ±udet(R) · det(R)

for some u ∈ H. The theorem now follows immediately from Theorem 6.1 and the
assumption that rank(L,ψ, α) = k(m− 1). �

Remark. Let L be a boundary link. According to Theorem 4.2 the twisted torsion
corresponding to any representation factoring through a p–group gives a sliceness
obstruction. On the other hand, according to Theorems 6.1 and 6.3 the twisted
torsions corresponding to many more representations give an obstruction to being
boundary slice. This is very similar to the situation in [Fr05] where the vanishing of
the eta invariant for (boundary) slice links is investigated, as well as [CKo99, Sm89]
(cf. [Fr05, Theorem 4.8] and [Fr05, Theorem 4.3]). Levine [Le07] used work of Vogel
[Vo90] to resolve the apparent discrepancy in [Fr05] between the vanishing of the
eta invariants for boundary links which are slice and those which are boundary
slice.

7. Computation for satellite links

7.1. The satellite construction. Let L ⊂ S3 be an m–component oriented link
and let K ⊂ S3 be a knot. Let A ⊂ EL be a simple closed curve, unknotted in S3.
Then S3 \ νA is a solid torus. Let ϕ : ∂(νA) → ∂(νK) be a diffeomorphism which
sends a meridian of A to a longitude of K, and a longitude of A to a meridian of
K. The space (

S3 \ νA
)
∪ϕ
(
S3 \ νK

)
is diffeomorphic to S3. The image of L is denoted by S = S(L,K,A). We say S is
the satellite link with companion K, orbit L and axis A. Put differently, S is the
result of replacing a tubular neighborhood of K by a link in a solid torus, namely
by L ⊂ S3 \ νA. Note that S inherits an orientation from L.

An important example is given by letting L be the unlink with two components
and A ⊂ EL as in Figure 1. The corresponding satellite knot S(L,K,A) is called

K =

L

A

B(K)

Figure 1. The Bing double of the Figure 8 knot.

the Bing double of K and referred to as B(K).
We now return to the discussion of satellite links in general. Note that the

abelianization map π1(S
3 \ νK)→ Z gives rise to a map of degree one S3 \ νK to
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νA which is a diffeomorphism on the boundary. In particular we get an induced
map

ES =
(
S3 \ νA \ νL

)
∪ϕ
(
S3 \ νK

)
−→

(
S3 \ νA \ νL

)
∪ νA = EL

which we denote by f . Note that f is a diffeomorphism on the boundary and that
f induces an isomorphism of homology groups.

Before we state the next lemma note that the curve A defines an element in
A ∈ π(L) which is well–defined up to conjugation.

Lemma 7.1. Let L,K,A, S = S(L,K,A) and f as above. Let Q be a subfield
of C and let α : π(L) → GL(Q, k) be a unitary representation. We denote the

representation π(S)
f−→ π(L)

α−→ GL(Q, k) by α as well. Let ψ : Zm → H be an
admissible homomorphism such that ψ(A) = 0. Denote by z1, . . . , zk the eigenvalues
of α(A) and let ∆K ∈ Z[t±1] be a fixed representative of the Alexander polynomial
of K. Then the following hold:

(1) rank(S, ψ, α) = rank(L,ψ, α) if and only if ∆K(zi) ̸= 0 for i = 1, . . . , k,
(2) if ∆K(zi) ̸= 0 for i = 1, . . . , k, then

τα⊗ψ(S) = τα⊗ψ(L) ·
k∏
i=1

∆K(zi) ∈ Q(H)×/N(Q(H))

up to multiplication by an element of the form ±dh with d ∈ det(α(π(L)))
and h ∈ H.

Before we give the proof of Lemma 7.1 we first state and prove the following
result which is an immediate consequence of Lemma 7.1 and Theorem 1.1.

Corollary 7.2. Let L be an oriented m–component slice link and let K,A and
S = S(L,K,A) as above. Let Q be a subfield of C closed under complex conjuga-
tion which has the unique factorization property and let α : π(L) → GL(R, k) be a
representation which factors through a p–group. Let ψ : Zm → H be an admissible
homomorphism. Denote by z1, . . . , zk the eigenvalues of α(A) and let ∆K ∈ Z[t±1]
be a fixed representative of the Alexander polynomial of K. Assume that ψ(A) = 0.
If S = S(L,K,A) is slice, then ∆K(zi) ̸= 0 for i = 1, . . . , k and

k∏
i=1

∆K(zi) = ±d · qq ∈ Q

for some d ∈ det(α(π(L))) and q ∈ Q.

Proof of Lemma 7.1. We write T = νA. Consider the following commutative
diagram of short exact sequences of cellular chain complexes (where we write
V = Q(H)k):

0 C∗(∂(T );V ) C∗(EL \ νA;V )⊕ C∗(S
3 \ νC;V ) C∗(ES ;V ) 0

0 C∗(∂(T );V ) C∗(EL \ νA;V )⊕ C∗(T ;V ) C∗(EL;V ) 0

// //

��
id

��
id⊕f

// //

��
f

// // // //

We assumed that ψ(A) = 0. It follows that the map ψ restricted to T and restricted

to S3 \ νK is trivial. In particular Cα⊗ψ∗ (EK ;Q(H)k) = Cα∗ (EK ;Qk)⊗Q(H) and

Cα⊗ψ∗ (T ;Q(H)k) = Cα∗ (T ;Q
k) ⊗ Q(H). It is a consequence of [Go78, Section 5]

that f∗ : H1(EK ;Qk) → H1(T ;Q
k) is always surjective and it is an isomorphism

if and only if ∆K(zi) ̸= 0 for i = 1, . . . , k. The first statement of the lemma
now follows immediately from the commutative diagram of long exact homology
sequences corresponding to the above diagram.

Now suppose that ∆K(zi) ̸= 0 for i = 1 . . . , k.
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Claim. The map f∗ : Hj(EK ;Qk)→ Hj(T ;Q
k) is an isomorphism for any j.

We already saw above that f∗ : H1(EK ;Qk) → H1(T ;Q
k) is an isomorphism.

Note that EK is homotopy equivalent to a 2–complex and that T is homotopy
equivalent to 1–complex. In particular H2(T ;Q

k) = 0 and it follows from the
long exact sequence that H2(EK ;Qk) = 0 as well. Note that π1(EK) → π1(T ) is
surjective, it follows that f∗ : H0(EK ;Qk) → H0(T ;Q

k) is surjective as well. On
the other hand we have that χ(EK) = 0 = χ(T ), hence

b0(EK ;Qk) = b1(EK ;Qk) + kχ(EK) = b1(T ;Q
k) + kχ(T ) = b0(T ;Q

k),

i.e. f∗ : H0(EK ;Qk) → H0(T ;Q
k) is in fact an isomorphism. This concludes the

proof of the claim.
Let Di be Q–bases for Hi(T ;Q

k), i = 0, 1. We endow Hi(EK ;Qk) with the
corresponding basis f−1

∗ (Di), i = 0, 1. It follows from the long exact sequence
corresponding to f : EK → T that H∗(f : EK → T ;Qk) = 0. It follows from
Theorem 2.2 (4) that

τα(T ; {Di}i=0,1) = τα(EK , {f−1
∗ (Di)}i=0,1) · τα(f : EK −→ T ).

(Here and in the following lines all equalities of torsion are up to multiplication by
an element of the form ±dh with d ∈ det(α(π(L))) and h ∈ H.) Note that the
Di are also Q–bases for Hi(T ;Q(H)k) = Hi(T ;Q

k)⊗Q(H), i = 0, 1. In particular
the calculations in the previous lines also work for the torsions corresponding to
twisting by α⊗ ψ.

Let B be a Seifert matrix for the knot K. It follows easily from [Go78, Section 5]
and [Tu01, Theorem 2.2] that

τα(f : EK −→ T )−1 =

k∏
i=1

det(Bt −Bzi) =
k∏
i=1

∆K(zi).

Now pick a Q(H)–basis B for H1(EL;V ) and denote the dual basis for H2(EL;V )
by B′. Finally pick bases Ei, i = 0, 1, 2 for Hi(∂T ;Q(H)k). Note that the bases
Di,B, Ei give rise to bases Fi, i = 0, 1, 2 for H∗(EL \ intT ;Q(H)k). It now follows
from Theorem 2.2 (4) that

τα⊗ψ(ES , {f−1(Bi)}) = τα⊗ψ(EL \ intT ; {Fi}) · τα⊗ψ(EK ; {f−1(Di)})

· τα⊗ψ(∂T, {Ei})−1

τα⊗ψ(EL, {Bi}) = τα⊗ψ(EL \ intT ; {Fi}) · τα⊗ψ(T ; {Di}) · τα⊗ψ(∂T, {Ei})−1

(Here and in the next line the equalities of torsion are up to multiplication by an
element of the form ±dh with d ∈ det(α(π(L))) and h ∈ H.) Combining these
results we now obtain that

τα⊗ψ(ES , {f−1(Bi)}) = τα⊗ψ(EL, {Bi}) ·
k∏
i=1

∆K(zi).

This implies the desired equality. �

7.2. Bing doubles. We consider the Bing double B(K) of a knot K, in order to
provide an example for a detailed computation. Note that if K is a slice knot, then
B(K) is in fact a slice link (cf. [Ci06, Section 1]). The converse is a well–known
folklore conjecture.

Given any knot K all the ‘classical’ sliceness obstructions (e.g. multivariable
Alexander polynomial, Levine–Tristram signatures) of its Bing double are trivial
(cf. [Ci06, Section 1] for a beautiful survey). It is therefore an interesting question to
determine which methods and invariants detect the non-sliceness of Bing doubles.
For interesting results, we refer to Cimasoni [Ci06], Harvey [Ha08], Cha [Ch10,
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Ch09], and Cha-Livingston-Ruberman [CLR08]. In particular in [CLR08] it was
proved that if K is not algebraically slice, B(K) is not slice. Also it is known that
there are algebraically slice knots with non-slice Bing doubles [CK08, CHL08]. (See
also [CLR08] for the smooth case.) In [Le09], Adam Levine investigated the smooth
(non–)sliceness of the positive Whitehead double of iterated Bing doubles.

Now let K = 41 be the Figure 8 knot. It is well–known that K is not slice.
For example this follows from [FM66] since the Alexander polynomial ∆41(t) =
t−1 − 3 + t is not a norm, namely not of the form ±tkf(t)f(t−1). In what follows
we show that an appropriate twisted torsion invariant of the Bing double B(41) is
not a norm, and consequently B(41) is not slice. (The fact that B(41) is not slice
had first been shown in [Ch10] using the discriminant invariant.)

Let x, y be the meridians of the two component unlink L and denote by A the
unknotted curve in the definition of Bing doubles. It is well-known that A represents
the commutator [x, y]. We write ξ = e2πi/8. Note that Z[ξ] is a UFD (cf. [Wa97,
Theorem 11.1]). Consider the representation α : π(L) = ⟨x, y⟩ → GL(Z[ξ], 8) given
by

α(x) =



0 0 0 ξ 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −i 0 0 0 0 0
0 0 0 0 0 0 0 ξ
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −ξ 0


and

α(y) =



0 0 0 0 ξ 0 0 0
0 0 0 0 0 0 0 −i
0 0 0 0 0 0 ξ3 0
0 0 0 0 0 ξ7 0 0
i 0 0 0 0 0 0 0
0 0 0 ξ 0 0 0 0
0 0 ξ3 0 0 0 0 0
0 −1 0 0 0 0 0 0


.

It follows easily from Proposition 5.1 that α factors through a 2–group. We denote

the representation π1(EB(K))
f−→ π(L)→ GL(Z[ξ], 8) by α as well, and we let ψ be

the isomorphism H1(EB(K)) ∼= H1(EL) → Z2. (Here K = 41.) We compute the
eigenvalues of α(A) = α([x, y]) to be

{±1,±i,±e2πi/16,±e2π3i/16}.

We then calculate

∆K(1) ·∆K(−1) ·∆K(i) ·∆K(−i)

·∆K(e2πi/16) ·∆K(−e2πi/16) ·∆K(e2π3i/16) ·∆K(−e2π3i/16)

to equal 2115. If B(K) was slice, then by Corollary 7.2 we would have

2115 = ±dq · q

for some d ∈ det(α(π(L))) and for some q in the quotient field of Z[ξ]. Note that qq
is a positive real number and note that det(α(π(L)))∩R = ±1. It therefore follows
that if B(K) is slice, then 2115 = q · q. Since Z[ξ] is a UFD we furthermore deduce
that q actually lies in Z[ξ]. Now note that 2115 = 47 ·45 = 47 ·(6+3i)(6−3i). Since
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Z[ξ] is a UFD we only have to show that 47 is not a norm. A direct calculation
shows that any norm in Z[ξ] is of the form

a2 + b2 + c2 + d2 +
√
2(a(b− d) + c(b+ d))

for some a, b, c, d ∈ Z. One can now easily deduce that 47 is not a norm in Z[ξ].
This concludes the proof of the claim.

Note that the process of Bing doubling can be iterated. We refer to the work
of the first author [Ch10], the first author and Kim [CK08], Cochran, Harvey and
Leidy [CHL08] and van Cott [vCo09] for interesting results on iterated Bing dou-
bling.
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