
TWISTED REIDEMEISTER TORSION, THE THURSTON NORM AND

FIBERED MANIFOLDS

STEFAN FRIEDL

Abstract. We prove that the twisted Reidemeister torsion of a 3-manifold corresponding to a fibered
class is monic and we show that it gives lower bounds on the Thurston norm. The former fixes a
flawed proof in [FV10], the latter gives a quick alternative argument for the main theorem of [FK06].

1. Introduction

A 3-manifold pair is a pair (N,ϕ) which consists of an orientable, connected, compact 3-manifold
N with empty or toroidal boundary and a primitive class ϕ ∈ H1(N ;Z) = Hom(π1(N),Z). The
Thurston norm (see [Th86]) of ϕ is defined as

∥ϕ∥T = min{χ−(Σ) |Σ ⊂ N properly embedded surface dual to ϕ}.

Here, given a surface Σ with connected components Σ1 ∪ · · · ∪ Σk, we define

χ−(Σ) =

k∑
i=1

max{−χ(Σi), 0}.

We furthermore say that ϕ is a fibered class if there exists a fibration p : N → S1 such that the
induced map p∗ : π1(N) → π1(S

1) = Z coincides with ϕ.
The Thurston norm can be viewed as a generalization of the genus of a knot and fibered classes are

a generalization of fibered knots. It is well known that the Alexander polynomial of a knot contains
information about the knot genus and about fiberedness.

This relationship has been generalized lately to twisted invariants. Recall that given a 3-manifold
pair (N,ϕ) and a representation α : π1(N) → GL(k,R) over a domain R we can consider the twisted
Reidemeister torsion τ(N,ϕ ⊗ α) ∈ Q(t), where Q is the quotient field of R. Note that τ(N,ϕ ⊗
α) ∈ Q(t) is well-defined up to multiplication by an element in Q(t) of the form ±rtk where r ∈
det(α(π1(N))) and k ∈ Z. We refer to Sections 2.1 and 2.2 and to [FV10] for details. This invariant
can be viewed as the generalization of the Alexander polynomial of a knot and it is closely related
to the twisted Alexander polynomials of Lin [Li01] and Wada [Wa94]. See [Ki96] and [FV10] for
details.

Given

f(t) = art
r + ar+1t

r+1 + · · ·+ ast
s ∈ R[t±1]
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with ar, as ̸= 0 we define deg(f(t)) = s− r. We furthermore say f(t) is monic if ar and as are equal
to ±1. Given f(t) = p(t)/q(t) ∈ Q(t) \ {0} we define

deg(f(t)) = deg(p(t))− deg(q(t)).

We say f(t) ∈ Q(t) is monic if it is the quotient of two monic polynomials in R[t±1].
We start out with the following result.

Theorem 1.1. Let (N,ϕ) be a fibered 3–manifold pair with N ̸= S1 × D2 and N ̸= S1 × S2. Let
α : π1(N) → GL(k,R) be a representation. Then τ(N,ϕ⊗ α) ∈ Q(t) is monic and we have

deg(τ(N,ϕ⊗ α)) = k · ∥ϕ∥T .

The following special cases have been proved before:

(1) Cha [Ch03] showed that twisted Alexander polynomials (which have in general a much larger
indeterminacy) of fibered knots are monic.

(2) Goda, Kitano and Morifuji [GKM05] showed that the twisted Reidemeister torsion of a
fibered knot is monic, the same proof also works for any fibered 3-manifold with non-trivial
boundary.

(3) In [FK06] it is shown that twisted Alexander polynomials of fibered 3-manifolds are monic.

None of the above proofs can be extended in a clear way to provide a proof of Theorem 1.1. Theorem
1.1 was given in [FV10] and a sketch of a short proof was given. Unfortunately the sketch was too
simple-minded and we now give a correct proof of this result.

In this paper we also give a quick proof of the following theorem which was first obtained in
[FK06].

Theorem 1.2. Let (N,ϕ) be a 3–manifold pair and let α : π1(N) → GL(k,R) be a representation
over a domain R. If τ(N,ϕ⊗ α) ̸= 0, then

deg(τ(N,ϕ⊗ α)) ≤ k · ∥ϕ∥T .

The proof in [FK06], as basically all proofs relating (twisted) Alexander polynomials to the knot
genus and the Thurston norm, relies on a Mayer–Vietoris sequence which relates the (twisted) Alexan-
der module to the homology of a Thurston norm minimizing surface. The proof we give in this paper
is quite different. It uses an appropriately chosen CW-complex structure for N to calculate the
twisted Reidemeister torsion. This approach allows us to give a proof which is considerably shorter
than the proof in [FK06]. Our proof of Theorem 1.2 can also be easily adapted to give alternative
proofs of [Tu02, Theorem 1], [Ha05, Theorem 10.1] and [Fr07, Theorem 1.2].

Note that a converse to Theorem 1.2 was proved in [FV12a] (or alternatively, see [FV08, Theorem 1]
combined with [PW12, Theorem 1.1]), namely given a non-fibered class ϕ there exists a representation
α such that τ(N,ϕ⊗ α) is zero. (See also [FV11] for an earlier and weaker result.) Also, in [FV12b]
it is shown that if N is irreducible and not a closed graph manifold, e.g. if N is hyperbolic, then
there exists a representation such that the twisted Reidemeister torsion detects the Thurston norm
of a given ϕ.

Convention. All manifolds are assumed to be connected, compact and oriented, unless it says
specifically otherwise.

Acknowledgment. We are grateful to Wolfgang Lück for pointing out the flawed argument in
[FV10]. We also wish to thank Jérôme Dubois for helpful conversations.
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2. Definitions and Preliminaries

2.1. Definition of twisted Reidemeister torsion. Let N be a 3-manifold and X ⊂ N a subspace.
We write π = π1(N). Let γ : π → GL(k,Q) be a representation over a field Q. We endow N with a

finite CW–structure such that X is a subcomplex. We denote the universal cover of N by p : Ñ → N
and we write X̃ := p−1(X). Recall that there exists a canonical left π–action on the universal

cover Ñ given by deck transformations. We consider the cellular chain complex C∗(Ñ , X̃) as a right
Z[π]-module by defining σ · g := g−1σ for a chain σ and some g ∈ π.

Using the representation γ we can view Qk as a left module over Z[π]. We can therefore consider
the Q–complex

C∗(Ñ , X̃)⊗Z[π] Q
k.

We now endow the free Z[π]–modules C∗(Ñ , X̃) with a basis by picking lifts of the cells of N \X to Ñ .

Together with the canonical basis v1, . . . , vk forQ
k we can now view theQ–complex C∗(Ñ , X̃)⊗Z[π]Q

k

as a complex of based Q–vector spaces.
If this complex is not acyclic, then we define τ(N,X, γ) = 0. Otherwise we denote by τ(N,X, γ) ∈

Q \ {0} the Reidemeister torsion of this based Q–complex. We will not recall the definition of Rei-
demeister torsion, referring instead to the many excellent expositions, e.g. [Mi66] and [Tu86, Tu01].
(Note that we follow the convention of [Tu86, Tu01], the torsion as in [Mi66] is the multiplicative
inverse of our torsion.) If X is the empty set, then we write of course τ(N, γ) instead of τ(N,X, γ).

It follows from standard arguments (cf. the above literature) that the Reidemeister torsion τ(N, γ)
is well–defined up to multiplication by an element of the form±r where r ∈ det(γ(π)). Put differently,
up to that indeterminacy τ(N, γ) is independent of the choice of underlying CW–structure, the
ordering of the cells and the choice of the lifts of the cells.

Note that γ extends to a map γ : Z[π] → M(k × k,Q). Given an r × s-matrix A over Z[π] we
denote by Aγ the rk× sk-matrix which is given by applying γ to each entry of A. If B is the matrix

over Z[π] which represents the boundary map of Ci(Ñ , X̃) → Ci−1(Ñ , X̃) with respect to the bases
given by the lifts, then Bγ represents the boundary map of

Ci(Ñ , X̃)⊗Z[π] Q
k → Ci−1(Ñ , X̃)⊗Z[π] Q

k

with respect to the aforementioned bases.

2.2. Twisted Reidemeister torsion of manifold pairs. Let (N,ϕ) be a 3–manifold pair and let
α : π1(N) → GL(k,R) be a representation over a domain R. We denote by Q the quotient field of
R. The representation α and ϕ : π1(N) → Z then give rise to a tensor representation

α⊗ ϕ : π → GL(k,Q(t))

g 7→ α(g) · tϕ(g) .

Note that in this case τ(N,ϕ ⊗ α) ∈ Q(t) is well-defined up to multiplication by an element in
Q(t) of the form ±rtk where r ∈ det(α(π1(N))) and k ∈ Z. In particular if α is a special linear
representation, then τ(N,ϕ ⊗ α) is well-defined up to multiplication by an element of the form
±tk, k ∈ Z. Henceforth, when we give an equality for Reidemeister torsion we mean that there exists
a representative for which the equality holds. Similarly, when we say that τ(N,ϕ⊗α) is monic, then
we mean that there exists a representative which is monic.
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The twisted Reidemeister torsion corresponding a to 3–manifold pair and a representation α was
first studied, with somewhat different definitions, by Lin [Li01], Wada [Wa94] and Kitano [Ki96].
We refer to the survey paper [FV10] for more information.

2.3. Turaev’s theorem. We will several times make use of the following theorem, which is easily
seen to be a special case of [Tu01, Theorem 2.2].

Theorem 2.1. Let Q be a field and let

C∗ = 0 → Qn3 B3−−→ Qn2 B2−−→ Qn1 B1−−→ Qn0 → 0

be a complex. We pick a subset of rows from B3 and a subset of columns from B1 and we delete the
corresponding columns and rows from B2 in such a way that we obtain square matrices A3, A2 and
A1. If det(A3) ̸= 0 and det(A1) ̸= 0, then

τ(C∗) = det(A3)
−1 · det(A2) · det(A1)

−1.

3. Proof of Theorem 1.1

Let (N,ϕ) be a fibered 3–manifold pair with N ̸= S1 × D2 and N ̸= S1 × S2. Let α : π1(N) →
GL(k,R) be a representation over a domain R. We denote by Σ the fiber of the fibration and we
denote by f : Σ → Σ the monodromy. Note that our restriction on N implies that Σ ̸= D2 and
Σ ̸= S2. Since ϕ is primitive it follows that Σ is furthermore connected.

We henceforth identify N with (Σ × [0, 2])/(x, 0) ∼ (f(x), 2) and we identify Σ with Σ × 0. We

pick once and for all a base point P for N in Σ× (1, 2). We furthermore denote by Ñ the universal
cover of N , which we identify with the set of homotopy classes of paths starting at the base point.
We write π = π1(N,P ) and Γ := π1(Σ× [1, 2]). We also pick a curve µ based at P which intersects
Σ precisely once and such that the intersection is positive. Note that ϕ(µ) = 1.

We now endow Σ with a CW–structure with exactly one 0-cell d0 and exactly one 2-cell d2. We
denote by d11, . . . , d1n the 1–cells of Σ. We can then endow N = (Σ× [0, 2])/ ∼ with a CW–structure
by extending the product CW-structure on Σ × [0, 1] to a CW-structure on N . Note that we can
extend the CW-structure such that there are no 0-cells in Σ× (1, 2) and such that there is precisely
one 3-cell in Σ× (1, 2). (But note that in general one can not arrange the CW–structure on Σ× [1, 2]
to be again a product structure.) Also note that we can arrange that there exists a 1-cell f of
Σ× (1, 2) such that ∂f = d0 ∪ −d0. Summarizing, we can endow N = (Σ× [0, 2])/(x, 0) ∼ (f(x), 2)
with a CW–structure where the cells are given as follows:

(1) d0 := d0 × {0} and d0 := d0 × {1},
(2) d1j := d1j × {0} and d1j := d1j × {1} for j = 1, . . . , n,

(3) d2 := d2 × {0} and d2 := d2 × {1},
(4) e1 := d0 × (0, 1),
(5) e2j := d1j × (0, 1) for j = 1, . . . , n,
(6) e3 := d2 × (0, 1),
(7) one 1-cell f1 with ∂f1 = d0 ∪ −d0
(8) one 3-cell f3 in Σ× (1, 2),

together with a collection F1 of 1-cells in M := Σ × (1, 2) and a collection F2 of 2-cells in M . For
each cell we now pick a base point. Furthermore, for each cell in Σ× [1, 2] we pick a path in Σ× [1, 2]
from the base point P to the chosen base points in the cells. We also pick paths in Σ × (0, 2] from
the base point P to each cell in Σ× (0, 1) which intersect Σ = Σ× 0 precisely once. Note that these
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Σ× 0 Σ× 1 Σ× 2

dij
eij

dij

f1

F1

paths define lifts of the cells to Ñ . By a slight abuse of notation we denote the lifts by the same
symbols. Note that we can and will pick the orientation of our cells and the basings of our cells such
that

∂e3 = d2 − µd2
∂e2j = d1j − µd1j , for j = 1, . . . , n,

∂e1 = d0 − µd0,

∂f3 = d2 − zd2 + linear combination over Z[Γ] of cells in F2,

∂f1 = d0 ∪ −xd0

for some z, x ∈ Γ. We now write

D1 := {d11, . . . , d1n}, D1 := {d11, . . . , d1n} and E2 := {e21, . . . , e2n}.

For i = 3, 2, 1, 0 we now equip the free Z[π]-modules Ci(Ñ) with the bases

{e3, f3}, {E2, d2, d2, F2}, {e1, D1, D1, f1, F1} and {d0, d0}.

Note that with respect to these bases the chain complex is now of the following form

0 → C3(Ñ)


∗ 0
1 1
−µ −z
0 ∗


−−−−−−−−−→ C2(Ñ)



∗ 0 0 0
idn ∗ 0 A

−µ idn 0 ∗ A
0 0 0 ∗
0 0 0 B


−−−−−−−−−−−−−−−−→ C1(Ñ)

(
1 ∗ 0 1 ∗
−µ 0 ∗ −x ∗

)
−−−−−−−−−−−−−−−−→ C0(Ñ) → 0.

Here we view the boundary matrices as block matrices corresponding in an obvious fashion to the
blocks of basis vectors. Note that A,A and B are matrices with entries in Z[Γ].

We now tensor this chain complex with the Z[π]-module Q(t)k. As discussed, the boundary
matrices are then given by applying α ⊗ ϕ to the above boundary matrices. We pick the rows of
∂3 corresponding to d2 ⊗ v1, . . . , d2 ⊗ vk and d2 ⊗ v1, . . . , d2 ⊗ vk and we pick the columns of ∂1
corresponding to e1 ⊗ v1, . . . , e1 ⊗ vk and f1 ⊗ v1, . . . , f1 ⊗ vk. It now follows from Theorem 2.1 that

τ(N,ϕ⊗ α) = det

(
1 1
−µ −z

)−1

ϕ⊗α

det

 idn A
−µ idn A

0 B


ϕ⊗α

det

(
1 1
−µ −x

)−1

ϕ⊗α

.
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Note that (ϕ⊗ α)(µ) = tα(µ) and that ϕ vanishes on Γ. We thus obtain the following equality:

(1)

τ(N,ϕ⊗ α)

= det

(
idk idk

−tα(µ) −α(z)

)−1

det

 idnk Aα

(−tµ idn)α Aα

0 Bα

det

(
idk idk

−tα(µk) −α(x)

)−1

= det(tα(µ)− α(z))−1

(
(−t)nk det(α(µ))n det

(
A
B

)
α

+ · · ·+ det

(
A
B

)
α

)
det(tα(µ)− α(x))−1.

(Here and throughout the rest of the paper all calculations will be performed up to sign.) We will
now prove the following claim.

Claim. There exist g, g ∈ π such that

det

(
A
B

)
α

= det(α(g)) and det

(
A
B

)
α

= det(α(g)).

We identify Σ with Σ× 0 = Σ× 2 and equip M = Σ× [1, 2] with the base point P . We denote by

p : M̂ → M the universal covering of M and we write Σ̂ := p−1(Σ). Note that the cells dij , dij and

fij in Ñ are in fact naturally cells in M̂ . For i = 3, 2, 1, 0 we now equip C∗(M̂, Σ̂) with the bases

{f3}, {d2, F2}, {D1, f1, F1} and {d0}.

It follows from the above that the chain complex C∗(M̂, Σ̂) with the above bases is of the form

0 → C3(M̂, Σ̂)

(
−z
∗

)
−−−−→ C2(M̂, Σ̂)


∗ A
∗ ∗
∗ B


−−−−−−→ C1(M̂, Σ̂)

(
∗ −x ∗

)
−−−−−−−−−→ C0(M̂, Σ̂) → 0.

We again apply α to the boundary matrices. We then pick the rows of ∂3 corresponding to d2 ⊗
v1, . . . , d2 ⊗ vk and we pick the columns of ∂1 corresponding to f1 ⊗ v1, . . . , f1 ⊗ vk. It now follows
from Theorem 2.1 that

τ(M,Σ, α) = det(α(z))−1 · det
(
A
B

)
α

· det(α(x))−1.

On the other hand the inclusion map S → M is a homotopy equivalence. Since the Whitehead
group of a surface group is trivial (see e.g. [Wal78, p .250]) this implies by [Mi66] that the relative
torsion is trivial for any coefficient system, i.e. τ(M,S, ϕ, α) = 1. We now see that g = xz has the
desired property. This concludes the proof of the first statement of the claim. The claim regarding
the second matrix is proved exactly the same way.

We now return to the proof of the theorem. Note that the first and the third term in (1) are monic.
The claim now implies that the middle term is also monic. Together this implies that τ(N,ϕ⊗α) is
monic. Furthermore, it follows from (1) and the above claim that

deg(N,ϕ⊗ α) = −k + nk − k = k(n− 2) = −kχ−(Σ) = ∥ϕ∥T .

Here the last equality follows from the well-known fact that a fiber is Thurston norm minimizing.
(In fact this is also an immediate consequence of Theorem 1.2). This now concludes the proof of
Theorem 1.1.
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4. Proof of Theorem 1.2

Let (N,ϕ) be a 3–manifold pair and let α : π1(N) → GL(k,R) be a representation over a domain
R. It follows easily from [Tu02, Section 1] that we can find a surface Σ ⊂ N with components
Σ1, . . . ,Σl and r1, . . . , rl ∈ N with the following properties:

(1) r1[Σ1] + · · ·+ rl[Σl] is dual to ϕ,

(2)
∑l

i=1−riχ(Σi) = ∥ϕ∥T ,
(3) N \ Σ is connected.

The proof of Theorem 1.2 proceeds in a similar fashion to the proof of Theorem 1.1 by picking a
suitable CW-structure. Since the surface is now disconnected the notation becomes necessarily more
heavy.

For i = 1, . . . , l we pick disjoint oriented tubular neighborhoods Σi × [−1, 2] and we identify Σi

with Σi×{0}. We write M := N \∪l
i=1Σi× [0, 1]. We pick once and for all a base point P in M and

we denote by Ñ the universal cover of N . We write π = π1(N,P ) and Γ := π1(M,P ). For i = 1, . . . , l
we also pick a curve µi based at P which intersects Σi precisely once in a positive direction and does
not intersect any other component of Σ. Note that ϕ(µi) = ri.

We now build a CW–structure on N as follows. For each i = 1, . . . , l we first endow Σi with a CW–
structure with exactly one 0-cell di0, exactly one 2-cell di2 and 1-cells di11, . . . , d

i
1ni

. For i = 1, . . . , l we
then equip Σi× [−1, 0], Σi× [0, 1] and Σi× [1, 2] with product CW-structures. Since M is connected
we can pick l disjoint curves which connect a point in di2 ×−1 with a point in di2 × 2. We use these
curves to tube the 3-cells di2 × (−1, 0) and di2 × (1, 2). We denote the resulting 3-cells by f1

3 , . . . , f
l
3.

We then extend the CW-structure to a CW-structure on all of N . Since M is connected we can
arrange that there are no 0-cells in M . Furthermore, by ‘swallowing’ other 3-cells we can in fact
arrange that f1

3 , . . . , f
l
3 are the only 3-cells in M . Finally we can arrange that for i = 1, . . . , l there

exists a 1-cell f i
1 such that ∂f i

1 = di0 ∪ −d
i
0. Summarizing, we can endow N with a CW–structure

where for i = 1, . . . , l we have the following cells:

(1) di0 := di0 × {0} and d
i
0 := di0 × {1},

(2) di1j := di1j × {0} and d
i
1j := di1j × {1} for j = 1, . . . , ni,

(3) di2 := di2 × {0} and d
i
2 := di2 × {1},

(4) ei1 := di0 × (0, 1),
(5) ei2j := di1j × (0, 1) for j = 1, . . . , ni,

(6) ei3 := di2 × (0, 1),

(7) one 1-cell f i
1 in M with ∂f i

1 = di0 ∪ −d
i
0,

(8) one 3-cell f i
3 in M with

∂f3 =

k∑
i=1

di2 − d
i
2 + linear combination of cells in M .

and there is a collection F1 of 1-cells in M and a collection F2 of 2-cells in M . For each cell we now
pick a base point and for each cell in M we pick a path in M from the base point P to the chosen
base points. Furthermore for each cell in Σi × (0, 1) we pick a path in M ∪ Σi × (0, 2] from the cell

to the base point P . These paths define lifts of the cells to Ñ and by a slight abuse of notation we
denote the lifts again by the same symbols. Note that we can and will pick the orientation of our
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cells and the basings of our cells such that for i = 1, . . . , l we have

∂ei3 = di2 − µd
i
2

∂ei2j = di1j − µd
i
1j for j = 1, . . . , ni,

∂ei1 = di0 − µd
i
0

and such that

∂f i
3 =

∑k
i=1 d

i
2 − zid

i
2 + linear combination over Z[Γ] of cells in F2,

∂f i
1 = di0 ∪ −xid

i
0,

where x1, . . . xl and z1, . . . , zl lie in Γ. For i = 1, . . . , l we write

Di
1 := {di11, . . . , di1n}, D

i
1 := {di11, . . . , d

i
1n} and Ei

2 := {ei21, . . . , ei2n}.

In the remaining discussion we now only consider the case l = 2 to simplify the notation. It should
be obvious to the reader that the general case can be treated exactly the same way.

Note that the chain groups Ci(Ñ) are free Z[π]-modules. For i = 3, 2, 1, 0 we now equip them with
the bases

{e13, f1
3 , e

2
3, f

2
3 }, {E1

2 , E
2
2 , d

1
2, d

1
2, d

2
2, d

2
2, F2}, {e11, e21, D1

1, D
1
1, D

2
1, D

2
1, f

1
1 , f

2
1 , F1} and {d10, d

1
0, d

2
0, d

2
0}.

With respect to these bases the boundary maps are then given by the following matrices:

B3 =



∗ 0 0 0
0 0 ∗ 0
1 1 0 0

−µ1 −z1 0 0
0 0 1 1
0 0 −µ1 −z2
0 ∗ 0 ∗



B2 =



∗ 0 0 0 0 0 0
0 ∗ 0 0 0 0 0

idn1 0 ∗ 0 0 0 ∗
−µ1 idn1 0 0 ∗ 0 0 ∗

0 idn2 0 0 ∗ 0 ∗
0 −µ2 idn2 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗
0 0 0 0 0 0 ∗
0 0 0 0 0 0 ∗


B3 =


1 0 ∗ 0 0 0 1 0 ∗

−µ1 0 0 ∗ 0 0 −x1 0 ∗
0 1 0 0 ∗ 0 0 1 ∗
0 −µ2 0 0 0 ∗ 0 −x2 ∗


Here we view the boundary matrices as block matrices corresponding in an obvious fashion to the
blocks of basis vectors. Note that all matrices marked by ∗ are matrices with entries in Z[Γ].

We now tensor this chain complex with the Z[π]-module Q(t)k. The boundary matrices are then
given by applying α ⊗ ϕ to the above boundary matrices. We pick the rows of ∂3 corresponding to
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di2 ⊗ vj and d
i
2 ⊗ vj for i = 1, 2, j = 1, . . . , k and we pick the columns of ∂1 corresponding to ei1 ⊗ vj

and f i
1 ⊗ vj for i = 1, 2, j = 1, . . . , k. It now follows from Theorem 2.1 that τ(N,ϕ⊗ α) equals

det


1 1 0 0

−µ1 −z1 0 0
0 0 1 1
0 0 −µ2 −z2


−1

ϕ⊗α

det


idn1 0 ∗

−µ1 idn1 0 ∗
0 idn2 ∗
0 −µ2 idn2 ∗


ϕ⊗α

det


1 0 1 0

−µ1 0 −x1 0
0 1 0 1
0 −µ2 0 −x2


−1

ϕ⊗α

.

Note that (ϕ⊗ α)(µi) = triα(µi). It follows that

det


1 1 0 0

−µ1 −z1 0 0
0 0 1 1
0 0 µ2 −z2


ϕ⊗α

= det(tr1α(µ1)− α(z1)) · det(tr1α(µ2)− α(z2))

=
(
tkr1 det(α(µ1)) + · · · ± α(z1)

)
·
(
tkr2 det(α(µ2)) + · · · ± α(z2)

)
is a polynomial of degree kr1+kr2. The same argument shows that the degree of the determinant of
the third matrix in the above calculation of τ(N,ϕ⊗α) equals kr1 + kr2. Also note that if we apply
the representation ϕ ⊗ α to a matrix over Z[Γ] we obtain a matrix with entries in Q. Combining
these observations we see that there exists a matrix A over Q such that

deg τ(N,ϕ⊗ α) = −2kr1 − 2kr2 + deg det




0 0 0
tr1P1 0 0
0 0 0
0 tr2P2 0

+A


where Pi = (−µi idni)α. Note that Pi is a kni × kni-matrix over Q. It is now elementary to see that

deg det




0 0 0
tr1P1 0 0
0 0 0
0 tr2P2 0

+A

 ≤ kn1r1 + kn2r2.

It follows that

deg(τ(N,ϕ⊗ α)) ≤ −2kr1 − 2kr2 + kn1r1 + kn2r2 = k((n1 − 2)r1 + (n2 − 2)r2)
= k(r1χ(Σ1) + r2χ(Σ2)) = k∥ϕ∥T .

This concludes the proof of Theorem 1.2.
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