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Slice knots

We consider knots K ⊂ S3 throughout. By defini-

tion a knot is equivalent to the trivial knot if and

only if K bounds an embedded disk in S3.

A knot K ⊂ S3 is called smoothly (resp. topolog-

ically) if K bounds a smooth (resp. locally flat)

embedded disk in D4.

Example. Consider the knot 61. It bounds an im-

mersed disk which can be turned into a (smoothly)

embedded disk in D4 by resolving the singularities.



Sliceness obstructions

Question. So is every knot slice?

Theorem. Let K ⊂ S3 be a knot, A a 2g × 2g–

Seifert matrix for K. If K is slice then A is conju-

gate to a matrix of the form(
0 P
Q R

)
where 0, P,Q,R are g × g–matrices.

Corollary. Let K ⊂ S3 slice. Let z ∈ S1 (prime

power root of unity), then the Levine–Tristram

signature vanishes, i.e.

σz(K) := sign(A(1− z) +At(1− z)) = 0.

Corollary. The trefoil has σ(K) := σ−1(K) = 2,

hence is not slice.



More examples of slice knots

We get more examples of slice knots by ‘tying a

knot into the top band’. This means we start out

with

and turn it into

Note that the singularities of the immersed disk did

not change, so we can still resolve the singularities

to get an embedded disk in D4.



The satellite construction

The above construction of more examples of slice

knots can be generalized: Let

(1) K ⊂ S3 a knot or link,

(2) η ∈⊂ S3 \K a curve which is the trivial knot in

S3, (the ‘axis’)

(3) J ⊂ S3 another knot (the ‘companion’).

Now we form a new knot S(K, J, η) out of K by

(1) cutting K along the disk bounding η,

(2) tying J into K,

(3) reglue.

Picture.



Satellite construction and sliceness

Question. Is the satellite knot of a slice knot al-

ways slice?

Example. No, take K the unknot, η a curve link-

ing K once, J the trefoil. Then S(K, J, η) is the

trefoil and not slice.

Question. So when Is the satellite knot of a slice

knot slice?



The plot thickens

Now consider the case where K is the unknot, η

as follows:

Then S(K, J, η) is the Whitehead double of J. Al-

gebraically it looks like the unknot:

∆S(K,J,η) = ∆K = 1.

Theorem.

(1) Any knot with ∆ = 1 is topologically slice

(Freedman)

(2) There are Whitehead doubles which are not

smoothly slice (Donaldson, Casson, Gompf, etc.).

We now concentrate on the question when are

satellite knots topologically slice.



The Seifert matrix of satellite knots

Assume that η ∈ S3\K is homologically trivial, i.e.

[η] = H1(S3 \K). In that case the Seifert matrix

of S(K, J, η) equals the Seifert matrix of K for any

J.

In particular if K is slice, then the Levine–Tristram

signatures of S(K, J, η) vanish as well.



The Casson–Gordon invariants

Given K and z ∈ S1 the Levine–Tristram signature

signatures can be viewed as a twisted signature

corresponding to a unitary representation

π1(MK)→ H1(MK) = Z→ U(1)

factoring through the abelianization of π1(MK)

(MK being the 0–framed surgery on K).

There are more sophisticated sliceness obstruc-

tions (‘Casson–Gordon invariants’) given by ‘twisted

signatures’ corresponding to unitary representa-

tions

π1(MK)→ U(k)

factoring through metabelian quotients of π1(MK).



The Casson–Gordon invariants of satellite knots

If K is slice, [η] = 0 ∈ H1(S3\K) then the Casson–

Gordon invariants of S(K, J, η) are certain Levine–

Tristram signatures of J.

Theorem. Assume

(1) K is slice with slice disk D,

(2) η ⊂ S3 \K with η = 0 ∈ π1(D4 \D),

(3) J any knot,

then all Casson–Gordon invariants of S(K, J, η) van-

ish.

Example. Take K the unknot, with slice disk D

the obvious disk in S3. Then

π1(D4 \D) = Z = H1(S3 \K),

i.e. η = 0 ∈ π1(D4 \ D) if its linking number

with K vanishes. In particular the construction for

the Whitehead double satisfies (1), (2) and (3).

Which is good because we saw that the White-

head double is slice.



The Main Theorem

Theorem (Cochran–F–Teichner). Assume

(1) K is slice with slice disk D,

(2) η ⊂ S3 \K with η = 0 ∈ π1(D4 \D),

(3) J any knot,

then S(K, J, η) is topologically slice.

Remark. This also works for K a slice link.

Example. Consider again the case of K = 61.

The theorem applies to η as above, but also to

any η homotopic (and not necessarily isotopic) to

η in S3 \K.



The main ideas of the proof I

The following is a folklore theorem.

Theorem. K ⊂ S3 is topologically slice if and only

if there exists a 4–manifold W with

(1) ∂W = MK,

(2) H1(MK)→ H1(W ) is an isomorphism,

(3) π1(W ) is normally generated by the meridian

of K,

(4) H2(W ) = 0.

Proof. If K is slice, then W = D4 \ νD.

Given W show that W with a 2–handle attached

to the meridian is a homotopy 4–ball, hence topo-

logically a 4–ball by Freedman.

Remark. One can always find W with properties

(1), (2) and (3), the sticky point is killing H2(W ).



The main ideas of the proof II

Now assume we have

(1) K (with slice disk D),

(2) η with η = 0 ∈ π1(D4 \D),

(3) J and we take any V bounding MJ with prop-

erties (1), (2), (3) and such that sign(V ) = 0.

We then consider

W = (D4 \ νD) ∪ V

where we glue a tubular neighborhood of η in

MK = ∂(D4\νD) to a tubular neighborhood of the

meridian of J in MJ = ∂V . Then H2(V )→ H2(W )

is an isomorphism. We have to kill H2(V ) by do-

ing surgery. We can not apply Freedman’s sphere

embedding theorem though since π1(W ) is big and

certainly not good.

Since η = 0 ∈ π1(D4\D) we also have that π1(V )→
π1(W ) is trivial. We can now apply a theorem of

Freedman and Teichner to kill H2(V ) = H2(W ) .


