ON THE ALGEBRAIC UNKNOTTING NUMBER
MACIEJ BORODZIK AND STEFAN FRIEDL

ABSTRACT. The algebraic unknotting number u,(K) of a knot K was introduced
by Hitoshi Murakami. It equals the minimal number of crossing changes needed to
turn K into an Alexander polynomial one knot. In a previous paper the authors
used the Blanchfield form of a knot K to define an invariant n(K) and proved
that n(K) < uq(K). They also showed that n(K) subsumes all previous classical
lower bounds on the (algebraic) unknotting number. In this paper we prove that
n(K) = ug(K).

1. INTRODUCTION

Let K be a knot. The unknotting number u(K) is defined to be the minimal
number of crossing changes needed to turn K into the trivial knot. The unknotting
number is one of the most basic but also most intractable invariants of a knot. Hi-
toshi Murakami [Muk90] introduced a more accessible invariant, namely the algebraic
unknotting number u,(K) which is defined to be the minimal number of crossing
changes needed to turn K into a knot with Alexander polynomial equal to one. (The
definition we gave above was shown by Fogel [Fo93, Theorem 1.4], see also [Sa99], to
be equivalent to Murakami’s original definition which was given in terms of certain
operations on Seifert matrices.)

It is obvious that the algebraic unknotting number is a lower bound on the un-
knotting number w(K) of a knot. It is furthermore well-known that the ‘classical’
lower bounds on the unknotting number, i.e. the lower bounds which can be de-
scribed in terms of the Seifert matrix of a knot, like the Nakanishi index [Na&T], the
Levine-Tristram signatures [Mus6d, Le6Y, 169, Ta79, BET4], the Lickorish obstruc-
tion [Li85, CL8G|, the Murakami obstruction [Muk90] and the Jabuka obstruction
[1a0d] give in fact lower bounds on the algebraic unknotting number.

In [BETT] the authors introduced a new invariant n(K) of a knot K as follows. We
write X (K) = 5%\ vK and we consider the Blanchfield form

BI(K): Hi(X(K); Z[t7]) x Hi(X(K); Z[tT]) — Q(t)/Z[t™"].
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(We refer to Section 24 for the definition.) Furthermore, given a hermitian n x n-
matrix A over Z[t*!] with det(A) # 0 we denote by A\(A) the form

ZIEAZRER < ZEE/AZET — Q) /Z[E]
(a,b) — aA'b,

where we view a, b as represented by column vectors in Z[t*!]". In [BETT] we defined

there exists a hermitian n x n—matrix A(t) over Z[t*!]
n(K) :=min < n | such that A\(A(%))) =& BI(K
(K)
and such that A(1) is diagonalizable over Z

In [BETH] we proved that such a matrix A exists, i.e. n(K) is defined, and in fact
we showed that n(K) < deg Ak (t) + 1. We also proved that n(K) is a lower bound
on the algebraic unknotting number, i.e. n(K) < u,(K). We furthermore showed
that n(K) subsumes all the previous classical lower bounds on the unknotting number
mentioned above. In this paper we will now prove that n(K) agrees with the algebraic
unknotting number, that is we will show the following theorem:

Theorem 1.1. Let K C S® be a knot, then
n(K) = u,(K).

In fact in Section B we will state and prove a slightly stronger statement which
takes into account positive and negative crossing changes.
We have now a following characterization of the algebraic unknotting number.

Proposition 1.2. Let K C S? be a knot. Then the following numbers are equal.

(1) The algebraic unknotting number, that is the minimal number of crossing
needed to turn K into an Alexander polynomial one knot.

(2) The minimal number of algebraic unknotting moves, see [Nk, Sa99], needed
to change the Seifert matrix of K into the trivial matriz.

(3) The minimal second Betti number of a topological 4—manifold that strictly
cobounds M (K), the zero framed surgery along K, see [BETI, Definition 2.5].

(4) The invariant n(K).

Proof. Saeki [Sa99, Theorem 1.1] showed that (1) = (2). In [BFTT] it was shown that
(4) < (3) < (1). By Theorem [0 we have actually (4) = (1). O

Note that (2) and (4) are purely algebraic quantities. It would be interesting to
find a direct algebraic proof that (2) = (4).

The paper is organized as follows. In Section B we recall the definition of the
Alexander module and of the Blanchfield form using Poincaré duality. In Section B
we then give a more geometric interpretation of the Blanchfield form.

Convention 1.3. All manifolds are assumed to be oriented and compact, unless it
says specifically otherwise.
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2. THE BLANCHFIELD FORM

2.1. Homologies of complexes over Z[t*!]. Let C, be any chain complex of finitely
generated free Z[t*]-modules and let M be any Z[t*!]-module. We can then consider
the corresponding homology and cohomology modules:

H*(C, M) = H*(C* ®Z[ti1} M), and

(2.1) H*(C; M) = H*(HOle[til](C*,M))-

By [Lev77, Theorem 2.3] there is a spectral sequence EJ = with
E, = Ext}) .y (Hy(C), M)

and which converges to H*(C, M). This spectral sequence is called the Universal Coef-

ficient Spectral Sequence, or UCSS for short. We note that for any two Z[t*!]-modules

H and M the module Ext%[til](H , M) is canonically isomorphic to Homg=1 (H, M).
Also note that

Ext?

b vy (H, M) =0

for any p > 2 since Z[t*'] has cohomological dimension 2. Finally note, that if Z
is considered as a Z[t*!] module with trivial t-action, then Z admits a resolution of

length 1, in particular

Ext} 1) (Z, M) = 0

[

for any p > 1.
For later use we also record the following lemma.

Lemma 2.1. Let H be a finitely generated Z[t*']-module, then Extyy..(H, Z[t*'])
is a free Z[t]-module.

The lemma is well-known but we are not aware of a good reference. We thus provide
a short proof, whose key idea was supplied to us by Jonathan Hillman.

Proof. Let H be a finitely generated Z[t*!']-module. Since Z[t*'] is Noetherian there
exists an exact sequence of the form Z[t+]" 2 Z[t*']* — H. Since the Hom-functor
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M +— Homgp+ (M, Z[t*1]) is left-exact the above exact sequence gives rise to an exact
sequence

0 — Hom(H,Z[t*]) — Hom(Z[til]S,Z[til])ﬁHom(Z[til]T,Z[tﬂ])
—  coker(¢p*) — 0.

Note that Z[t*!] is a ring of homological dimension 2. (This is for example a straight-
forward consequence of the fact that the ring Z[t] has homological dimension 2 which
is proved in [La06, Theorem 5.36].) We can therefore find a projective resolution

0 — P, — P, — Py — coker(¢*) — 0

for coker(¢*) of length two. Comparing these two resolutions for coker(¢*) and noting
that Hom(Z[t*']*, Z[t*']) and Hom(Z[t]", Z[tF!]) are free Z[t*']-modules implies
by Schanuel’s lemma (see [Lad9d, Corollary 5.5]) that Hom(H, Z[t*']) is projective.
Finally, it is a special case of the Serre Conjecture, see e.g. [Lalf, Corollary 4.12],
that a finitely generated projective Z[t*!]-module is in fact free. This concludes the
proof that Hom(H, Z[t*']) is a free Z[t*!]-module. O

2.2. Twisted homology, cohomology groups and Poincaré duality. Let X be
a topological space and let ¢: 7 (X) — (t) be an epimorphism onto the infinite cyclic
group generated by t. We denote by 7: X — X the corresponding infinite cyclic
covering of X. Given a subspace Y C X we write Y := 77 1(Y).

The deck transformation induces a canonical Z[t*']-action on C,(X,Y:Z) and we
can thus view C’*()? Y Z) as a chain complex of free Z[t*!]-modules. Now let M be
a module over Z[t*!]. We then consider homologies H,(X,Y; M) and H*(X,Y; M)
as defined in (270). The most important instance will be M = Z[t*1].

If K C S3is an oriented knot, then we denote by ¢: 7 (X (K)) — (t) the epimor-
phism given by sending the oriented meridian to ¢. Furthermore, if X is a space with
H,(X;7Z) = Z, then we pick either epimorphism from m;(X) onto (t). For different
choices of epimorphisms the resulting modules H,(X,Y;Z[t*]) and H*(X,Y; Z[t*!])
will be anti—isomorphic, i.e. multiplication by ¢ in one module corresponds to multi-
plication by ¢! in the other module. Since this does not affect any of the arguments
we will usually not record the choice of ¢ in our notation.

Finally suppose that X is an orientable n-manifold and that W is a union of
components of X . Then for any Z[t*']-module M, Poincaré duality (see e.g. [Wad4,
Chapter 2]) defines isomorphisms of Z[t*!]-modules

in particular if W = (), then we get a canonical isomorphism

Hi(X; M) = H"(X,0X; M).
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Here, given a Z[t*']-module N we denote by N the same abelian group as N but
with the involuted Z[t*!]-action, i.e. multiplication by ¢t on N corresponds to multi-
plication by t~! on N.

2.3. Orders of Z[t*!]-modules. Let H be a finitely generated Z[t*!]-module. Since
Z[t*'] is Noetherian it follows that H is also finitely presented, i.e. we can find a
resolution

ZEE™ Az — H,

where we can assume that m > n. We then define order(H) € Z[t*!] to be the
greatest common divisor of the n x n—minors of A. It is well-known that, up to
multiplication by a unit in Z[t*!], i.e. up to multiplication by an element of the form
+t* k € 7Z, the invariant order(H) is independent of the choice of A. We refer to
[Hi0?] for details. In the following, given f, g € Z[t*!] we write f = g if f and g agree
up to multiplication by a unit in Z[t*1].

Example 2.2. If H admits a square presentation matrix A over Z[t*!] of size n, then
it follows immediately from the definition that the order of H equals det(A).

Example 2.3. The Alexander polynomial of a knot K is defined to be the order of the
Alexander module H; (X (K); Z[t*']). Throughout this paper we will normalize the
Alexander polynomial such that Ax (1) = 1 and Ag(t7!) = Ag(t).

The following result is standard (see e.g. [Hi0Z, Section 3]), we will use it often in
the future.

Lemma 2.4. The order of any Z[t*']-module is also an annihilator, i.e. order(H) -
v =0 for any v € H. In particular if K is knot, then for any c € H\(X(K); Z[t*!]),
we have Ak(t) - c = 0.

Remark 2.5. Given p = p(t) € Z[t*'] we define p := p(t~!). Note that for any
Z[t*']-module we have

order(M) = order(M).
We will later make use of the following lemma (see again [Hi0Z] for details).
Lemma 2.6. Let
0—H-—H — H'—0

be a short exact sequence of Z[t*']-modules, then

order(H') = order(H) - order(H").
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2.4. The homological definition of the Blanchfield form. Let K C S? be a
knot. We consider the following sequence of maps:

O: Hy(X(K);Z[t*]) — Hi(X(K),0X(K); Z[t*])
— H2(X(K); Z[t*1]) < H(X(K); Q(t)/Z[t*1])
); Z[t£1), Q(8) /Z[t=1)).

Here the first map is the inclusion induced map, the second map is Poincaré duality,
the third map comes from the long exact sequence in cohomology corresponding to
the coefficients 0 — Z[t*] — Q(t) — Q(¢)/Z[t*'] — 0, and the last map is the
evaluation map. All these maps are isomorphisms, and hence define a non-singular
form

— Homz[til](Hl( (

BI(K): H\(X(K); Z[t*]) x Hi(X(K); Z[t]) — Q(t)/Z[t™]
(a,0) = ®(a)(b),
called the Blanchfield form of K. This form is well-known to be hermitian, in partic-
ular BI(K)(ay,a2) = Bl(K)(az,ay) and Bl(K)(uia1, poas) = mBlU(K) (a1, az)ps for
wi € Z[t*Y, a; € Hi(X(K); Z[t*']). The Blanchfield form was initially introduced by
Blanchfield [BI57]. We will give a more geometric definition in the next section.

Remark 2.7. By Lemma P4 the polynomial Ag(t) annihilates Hy (X (K);Z[t*]), it
follows easily from the definitions that BI(K) takes in fact values in Ag (t) 1 Z[tFY] /Z[tF] C

Q)/Z[t*).

3. THE TWISTED LINKING FORM

3.1. Pairings on infinite cyclic covers. Let K C S? be an oriented knot. We write
X = X(K), which we endow with the orientation coming from S*, and we denote
by A the Alexander polynomial of K. Recall that ¢: m(X) — (t) is the unique
epimorphism which sends the oriented meridian of K to ¢. Then (t) acts on X, the
corresponding infinite cyclic cover of X; we can thus view H;(X) as a Z[t*']-module.
This module is by definition precisely the Alexander module H;(X;Z[t*!]) as defined
above. _

We say that a simple closed curve ¢ C X is in general position if t'c and c are
disjoint for any ¢ € Z. Furthermore we say that a pair of simple closed oriented
curves c,d is in general position in X, if t'c and d are disjoint for any 7 € Z. Finally,
if ¢ is a simple closed curve and F' an embedded surface in X, then we say that they
are in general position if for any ¢ € Z the curve t'c intersects F' transversely.

If ¢ is a simple closed oriented curve in X and n € N, then we denote by nc
the union of n parallel copies of c. We can and will assume that these parallel
copies are in general position to each other. If —n € N, then we denote by nc the
union of —n parallel copies of —c, i.e. of ¢ with opposite orientation. Finally if
p(t) = S\, a;t’ € Z[t*'], then we denote by p(t)c the union of axtfcU - - - U at'c.
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The following definition is now a variation on the equivariant intersection number
in a covering space (see e.g. [COTO3, p. 495]).

Definition 3.1. Let ¢,d C X be simple closed oriented curves in general position. By
Lemma P4 there exists an embedded oriented surface F' C X such that 0F = A - c.
We can arrange that F' and d are in general position. The twisted linking number of

c and d is defined as

_ 1 , 1
3.1 k(c,d) == — Y (F-td) -t e —Z[t*].
(31) (o) = g S0P 1) € T2
Here F'- tid~denotes the ordinary intersection number of the oriented submanifolds F’
and t'd in X.
Lemma 3.2. The twisted linking form ﬁ{(c, d) is independent of the choice of F.
Proof. By Poincaré duality we have

Hy(X;Z[tY]) = HY(X, 90X, Z[tH),

but Hy(X,0X; Z[t*]) is Z[t*']-torsion and Hy(X,0X;Z[t*']) = 0. It now follows
from the UCSS that Ho(X;Z) = Ho(X; Z[t*!]) = 0. Now let F” be any other surface

cobounding A - ¢, then F'U —F” forms a closed oriented surface in X , in particular it
represents an element in Hy(X; Z[t*']). But since Ho(X; Z[t*!]) = 0 it now follows
that (FFU—F") - d = 0. This concludes the proof of the lemma. O

Lemma 3.3.

Ik(d, ) = Ik(c, d).

Proof. Let F,G C X be embedded oriented surfaces such that 9F = A - ¢ and
0G = A -d. We can assume that t'F intersects G transversely for any i. For any
i the 1-manifold ¢*F N G defines a cobordism between t'F Nd and G N tic. Tt thus
follows that

ATk(d,¢) = Yp(G o)™ = 3 (FF - )t =
Dien(F 7t =3 (F - t1d)t = 30 (F - )t~
= A-Ik(c,d) =A-Ik(c,d) = A - 1k(c, d).

O

In general, if ¢ and ¢ are homologous curves in X, the linking form lk(c d) and
lk(c d) will be different (unless ¢ and ¢’ are homologous in X \ d). Nevertheless,
Ik(c, d) mod Z[t*] is homology invariant. Therefore, lk(c, d) descends to a form

H\(X5Z[t]) x Hi(XZ[E) — ZZ[tﬂ]/Z[tﬂ],

which by definition is precisely the Blanchfield form BI(K). We refer to [BI57] for
details.
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3.2. Based curves and surfaces. In this section we will take a point of view which
differs from the discussion in the previous section: instead of studying objects in the
infinite cyclic cover of X (K) we will now consider based objects in X (K).

Let K C S® be an oriented knot. As above we write X = X(K) and we denote

the infinite cyclic cover of X by X. In this section we will define an invariant lk;
which will turn out to capture the same information as lk in the previous section, but

instead of considering curves in X we will now work with based curves in X.
We fix once and for all a base point * in X. We now need several definitions:

(1) By a surface in X we always mean an immersed surface. By a smooth curve
on the immersed surface we mean the image of a smooth curve on the original
surface under the immersion.

(2) A based curve (respectively surface) in X is an oriented curve (respectively
oriented surface) in X together with a path, called basing connecting it to the
base point *. We assume that the basing intersects the curve (respectively the
surface) in only one point.

(3) By an orientation of a based curve (respectively surface) we mean an orienta-
tion of the unbased curve (respectively surface).

(4) A curve c in X is called homologically trivial if ¢ is trivial in Hy(X;Z).

(5) A surface F'in X is homologically invisible if any smooth curve on F' is null-
homologous in X. Note that a curve (respectively surface) is homologically
trivial (respectively invisible) if and only if it lifts to X.

(6) We say that two based homologically trivial curves are equivalent if the un-
based curves agree and if the basings are homologous relative to the base
point and relative to a path connecting the end points on the curve. (This
condition does not depend on the path since the curve is assumed to be ho-
mologically trivial.) Similarly we define equivalence of based homologically
invisible surfaces.

(7) We say that two based objects are disjoint if the corresponding unbased objects
are disjoint.

(8) We say that a based curve ¢ and a based surface F'in X are in general position
if the unbased curve and the unbased surface are in general position and if
furthermore the basings are embedded and disjoint from ¢ and from F.

Let ¢ be a homologically trivial based curve in X and let F' be a homologically
invisible based surface in X such that F' and ¢ are in general position. Any inter-
section point P of the (unbased) curve and the (unbased) surface comes with a sign
ep € {—1,1}. To any intersection point P we can also associate a loop [p in X in
the following way. We go from the base point * via a smooth curve on the based
surface F' to the intersection P, and then we go back to * along the curve c. Since
F is homologically invisible and ¢ is homologically trivial, it follows that ¢(lp) is
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independent of the choices. Following [COT03, p. 499] we now define

F-c:= Y epo(lp) € Zt*"].
PecenF
Note that F' - ¢ only depends on the equivalence classes of F' and ¢. We will thus in
the following mostly consider based curves and surfaces up to equivalence.

Given a based curve ¢ and k € Z we now denote by t*c the based curve which is
given by precomposing the basing with a closed loop | which satisfies ¢(I) = t*. Note
that the equivalence class of t*c is well-defined. Furthermore, given n € Z we denote
by nc the union of |n| parallel copies of ¢, with opposite orientation if n < 0. For any
Laurent polynomial p(t) € Z[t*!'] we define p(t)c in the obvious way. Obviously

Fp(t)e = p(t)(F - c).

Let F' be a based homologically invisible surface. Its boundary components inherit
basings which are well-defined up to equivalence. We can thus view OF as a union
of based curves. N

We denote the infinite cyclic covering map of X by 7: X — X and we pick a base
point * in X lying over *. With these choices there is a one-to-one correspondence

equivalence classes of

. < curves (surfaces) in X.
based curves (surfaces) in X ( )

Now let ¢, d be based curves which only intersect at *. Then the corresponding closed
curves ¢, d in X are in general position.

By Lemma P4, there exists a surface F C X such that OF = AZ. Let us choose a
curve 7 connecting * to a point on F. The projection of FtoX yields an immersed
surface ¥ C X. Then F is a based surface, the basing is 7, a projection of 7 to X.

Any smooth curve on F' is an image of a curve on F by definition. In particular,
any smooth curve on F' lifts to X, which means that F is homologically invisible. By

construction 0F = Ac. We can now define

lm@dyzéF-de%ﬂﬁﬂ

It is straightforward to see that
~ _~ 1
&mazmm@exmﬁy

It thus follows from the previous section that lk;(c,d) is well-defined and that it

satisfies 1k(d, ¢) = lk;(c, d). It also follows easily from the definitions that
(e, d)|r = Tk(c, d),

i.e. the evaluation of lk;(c,d) at t = 1 equals the linking number of the unbased
curves ¢ and d. Finally note, that lk,(c, d) is an invariant of the isotopy class of cUd.
This follows from the definitions and the fact that any isotopy of c U d extends to an
isotopy of S3.
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From now on we shall use only the notation lk;(c, d).
By a framed curve in X we mean a pair (¢, m) where ¢ is a based simple closed
curve and m € Z. Given such (¢, m) we define

Ik ((c,m), (¢, m)) :=lk(c, ),

where ¢ is a longitude of ¢ with the property that lk(c, ¢’) = m. It follows immediately
from the above that

Ik ((c,m), (¢,m)))i=1 = lk(e,d)s=1 = lk(e,d) =m.
If n # m, then we define
1k ((c,n), (c,m)) := 1k ((c,m), (¢, m)) + n — m.

In the following we will often suppress m and we will just say that c is a based simple
closed curve with framing m. In particular if the framing is understood, then we will
just write lk(c, ¢). Also, if ¢ = (¢,m) and d = (d,n) are framed curves, such that ¢
and d are disjoint, then we define

ki ((e,m), (d,n)) := lk(c,d).

4. 4—MANIFOLDS AND INTERSECTION FORMS

4.1. The twisted intersection form. In the following let W be a 4-manifold, pos-
sibly with boundary, with the following properties:

(1) HH(W;,Z) = Z,

(2) Hy(W;Z[t*]) =0,

(3) FHo(W; Z[t*Y]) := Ho(W; Z[t*1]) /{Z[t*']-torsion} is a free Z[t*!]-module.
We now define the intersection form Qs on FHo(W;Z[t*!]). First consider the se-
quence of maps

U Hy(W3Z[EY) —  Ho(W,0W; Z[t+Y) S H2(W,; Z[EE)
— Homgpen (Hao(W; Z[EY), Z[E1)),

where the first map is the inclusion induced map, the second map is Poincaré du-
ality and the third map is the evaluation map. The second map is evidently an
isomorphism. The third map is also an isomorphism, indeed, since Hy(W; Z[t*!]) = 0
and since ExtiZ[til}(Z, Z[t*']) = 0 for i > 1 we see that the UCSS for H*(W; Z[t*1])

collapses, i.e. the evaluation map
H*(W; Z[t*F]) — Homgpey (Ho(W; Z[tF), Z[tF))

is in fact an isomorphism. In constrast, the first map in (E) is in general not an
isomorphism.
From (Z1) we now obtain a form

Hy(W; Z[tH) x Hy(WZ[tY)) — 7
(a,b) = V(a)(b)

(4.1)
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but this clearly descends to a form
FHy(W; Z[tEY) x FHy(W; Z[tE]) — Z[t*),

which we denote by Qy. The form @y can also be defined more geometrically using
equivariant intersection numbers of immersed based surfaces. This interpretation
then quickly shows that Qy is hermitian. We refer to [Wa394, Chapter 5] for details.

We now pick a basis for the free Z[t*']-module FHo(W;Z[t*!]) and we denote by
det(Qw) the matrix of the intersection form @y with respect to this basis. Note
that the determinant is in fact well-defined, that is, up to a unit in Z[t*!] it does
not depend on the choice of basis for FHy(W;Z[t*']). The following lemma shows,
that one can also determine det(Qy ) using any maximal set of linearly independent
vectors in FHo(W; Z[t*!]), not necessarily a basis.

Lemma 4.1. Let vy,...,v, € FHy(W;Z[t*']) be a mazimal set of linearly indepen-
dent vectors in FHy(W; Z[t*']). We denote by f € Z[t*'] the order of the Z[t*]-
module

FHy (W Z[E) /(v - - - o),

then _

det(Qw) - f - f = det ({Qw (vi, v;) }i5) -
Proof. Since FHy(W; Z[t*!]) is free, there is a basis wy, . . ., w,. The vectors vy, ..., v,
can be expressed in terms of wy,...,w,. Let P be an n x n matrix over Z[t*!], such

that Pv; = w; for any j =1,...,n. We have

We claim that f = det(P). Indeed, P can be regarded as a map Z[t*]" — Z[t*!]".

On the one hand, det P is the order of the cokernel (see Example 222). On the other
hand, the cokernel of P is FHy(W;Z[t*])/(v1, ..., V). O

4.2. Z[t*']—cobordisms. We say that a 3-manifold M is a homology S* x S? if M
is closed, if H1(M;Z) = Z and if M comes equipped with a choice of an isomorphism
H(M;Z) — Z. Given a 3-manifold M which is a homology S x S? we can consider
the module Hy(M;Z[t*']), and we can define a Blanchfield form on H,(M;Z[t*']) in
the same fashion as for X (K). We denote by Ay = Ay, (t) the order of H, (M; Z[t*1]).
Note that Hy(M;Z) = Z implies that Ay (1) = 1, in particular Ay,(t) is non-zero.
The standard arguments already employed for X (K') show that

Hy (M3 Z[tH]) = HY(M; Z[t+]) 2 Extyya(Z, Z[tH]) = Z

is in fact isomorphic to the trivial Z[t*']-module Z.

Ezample 4.2. Let K be a knot. We denote by M(K) the zero—framed surgery on
K. The inclusion map X(K) — M(K) induces an isomorphism H;(X(K);Z) —
Hi(M(K);Z). Together with the isomorphism H; (X (K);Z) — Z sending an oriented
meridian to one we get a preferred isomorphism Hy(M(K);Z) — Z. 1t follows that
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M(K) is a homology S* x S2%. It is well-known that the inclusion X(K) — M(K)
induces an isomorphism H, (X (K); Z[t*']) — Hy(M(K); Z[t*']), which is in fact an
isometry of the Blanchfield forms.

Definition 4.3. Let M and M’ be 3-manifolds which are homology S* x S%’s. By
a Z[t*]-cobordism between M and M’ we understand an orientable, compact 4—
manifold W with the following properties:
(1) OW =M U-M,
(2) Hi(M;Z) — H(W;Z) and H{(M'";Z) — H,(W;Z) are isomorphisms, and
the following diagram given by the inclusions and the preferred isomorphisms
commutes:

H\(M;Z) — H,(W;Z) <— H,(M";Z)

T~

We now have the following lemma:

Lemma 4.4. Let M and M’ be 3-manifolds which are homology S* x S?’s. Let W
be a Z[t']-cobordism between M and M’', then the following Z[t=']-modules are free:
(1) Hy(W, M; Z[t*Y]) and Hy(W, M'; Z[t*Y]),
(2) Hy(W,0W;Z[t*Y]), and
(3) FHy(W; Z[t*Y]) = Hy(W; Z[tHY]) ) Z [t ~torsion.
Proof. (1) We first consider Hy(W, M; Z[t*']). By Poincaré duality this is isomorphic
to H2(W, M’; Z[t*1]). The long exact sequence in Z[t*!]-homology of the pair (W, M’)
yields:

(3) Hy (W Z[E1)) = 0.

H(WSZ[EY]) = Hi(W, M5Z[EY]) -
Ho(M';Z[EY)) —  Ho(W;Z[tFY]) —  Ho(W, M Z[tEY]) — o.

Our assumptions on W imply that Hy(W;Z[t*!]) = 0 and that Ho(M';Z[t*']) —
Ho(W; Z[t*']) is an isomorphism. We thus conclude that
H (W, M"; Z[t*F]) = Ho(W, M'; Z[t*']) = 0.
The UCSS implies that
H*(W, M'; Z[t*"]) = Homgpe) (Ho (W, M'; Z[t+1), Z[tF]),
but from Lemma 20 it follows that Homgy+y(Ho (W, M'; Z[t*']), Z[t*']) is a free
Z[t*]-module. We infer that Hy(W, M;Z[t*!]) is a free Z[t*!]-module. The same

argument shows of course that Ho(W, M’; Z[t*1]) is also free.
(2) By Poincaré duality we have an isomorphism

Hy(W, OW; Z[t*)) = F2(W; Z[ET)).
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Since Hy(W;Z[t*']) = 0 by assumption and since Exty.y(Z, Z[t*']) = 0 for i > 1 it
follows from the UCSS, that H*(W; Z[t*']) = Homysy (Ha(W; Z[t+1]), Z[t*']), which
is free by Lemma 2.

(3) Finally we want to show that FH,(W;Z[t*!]) is also free. Recall that by
assumption H,(W;Z[t*]) = 0. We obtain the following exact sequence

Hy(M;Z[tEY]) — Hy(WHZ[1FY]) —  Ho(W, M;Z[tFY]) —
= H(M;Z[t*]) — 0.

Note that Hy(M;Z[t*Y]) is Z[tT']-torsion and Hy(W, M;Z[t*]) is a free Z[tT']-
module by the above, in particular the module Hy(W, M;Z[t*!]) is Z[t*!]-torsion
free. The above exact sequence thus descends to the following short exact sequence

(4.2) 0 — FHy(W; Z[t*']) — Ho(W, M; Z[t*]) — H,(M; Z[t*']) — 0.
Since Hy(W, M; Z[t*!]) is free we can find an isomorphism
: Z[F) — Ho(W, M; Z[H))

for some appropriate n.
Now let vy, ..., v, be a minimal generating set for FHo(W; Z[t*!]). We thus obtain
the following commutative diagram of exact sequences:

Z[tEm 4 Z[tEn Hy(M: Z[t*']) —— 0

v o |-

0 — FHy(W; Z[t*')) —= Ho(W, M; Z[t*1]) — Hy(M; Z[t*1]) — 0,

where U sends the i-th standard basis vector of Z[t*!]™ to v; and where A is given
by ® ' odo W. The n x m-matrix A over Z[t*!] is thus a presentation matrix for
Hy(M;Z[t*]). Tt is well-known that H;(M;Z[t*']) admits a square presentation
matrix B, e.g. we can take B = Vit — V!, where V denotes a Seifert matrix. Note
that det(B) = Ak (t) is non—zero, i.e. the columns of B are linearly independent over
Z[t*1].

It now follows from [[i97, Theorem 6.1], that

minimal number of generators of column space of A — number of rows of A
= minimal number of generators of column space of B — number of rows of B.

The latter is zero by the above, so we see that m = n. Since A is therefore a square
matrix we see that det(A) = Ag(¢), in particular the map given by the matrix A is
injective.
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We thus obtain the following commutative diagram of short exact sequences:

0 ——— Z[tF" Z[tEn Hy(M; Z[t*']) ——=0

0 ——= FHy(W; Z[t*')) —= Ho(W, M; Z[t*']) — H, (M; Z[t+]) —= 0.

It now follows from the 5-lemma that the vertical map Z[t*!]" — FHo(W; Z[t*!]) is
an isomorphism, in particular FHo(W; Z[t*!]) is free. O

The following result is one of the two homological ingredients in the proof of The-
orem [Tl

Proposition 4.5. Let K and J be knots in S® and let W be a Z[t=']-cobordism
between M(K) and M(J), then

det(Qw) = AK(t) . AJ(t)

Proof. Recall that the last two maps in the definition of the intersection form Qyy,
(E7), are isomorphisms. On the other hand the first map fits into the long exact
sequence

Hy(OW; Z[t*1Y) Ho(WSZ[tE]) —  Ho(W,0W; Z[tHY]) —
—  H(0OW; Z[t*1]) H\(W;Z[tH]) —

In our case OW = M (K) L M(J), it thus follows that
H;(OW; Z[t7]) = H;(M(K); Z[t*)) @ H{(M(J); Z[t*']) for i = 1,2,

which is Z[t*]-torsion. Since Ho(W,0W; Z[t*]) is free and since H,(W;Z[t*!]) =0
we now see that the above long exact sequence descends to the following short exact
sequence:

_>
_>

FHy(W; Z[t£Y]) — Ho(W,0W; Z[t*1]) —

0
) = 0.

_>
H\(M(K); Z[t*')) @ Hy (M (J); Z[t*]) —
Let A be a matrix representing Qy for a basis for FHo(W;Z[t*!]). Tt follows from
the definition of Qy that the matrix A also represents the map FHy(W; Z[t*!]) —
Hy (W, 0W; Z[t*!]) for some appropriate bases. We thus see that A is a presentation
matrix for the Z[t*']-module

Hy (M(K); Z[t) @ Hy(M(J); Z[t™]),
which by the definition of the Alexander polynomials implies that
det(A) = Ag(t) - Ay(t).
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4.3. Surgeries and intersection forms. Let M be a 3-manifold which is a ho-
mology S' x S?%. Let (c1,€1),...,(Cn,€,) be framed oriented curves in M with the
following properties:

(1) the framings are either —1 or 1,

(2) c1,...,c, are homologically trivial in M.
We then consider the 4-manifold W which is given by attaching 2-handles hq, ..., h,
with framings €,...,¢, to M x [0,1] along ¢; x {1},...,¢, x {1} € M x {1}. We
identify M with M x {0} and we denote by M’ the other boundary component of 1.

It follows from (2) that H,(W;Z) = Z and that the maps H,(M;Z) — H,(W;Z)

and H(M';Z) — Hy(W;Z) are isomorphisms. It furthermore follows from (2) that
ci,- .., ¢, define elements of Hy(M;Z[t*!]), which are well-defined up to a power of
t. It is straightforward to see that

Hy (WS Z[tEEY) =2 Hy (M Z[E) [ (en, - - - cn).
Next result is the second homological ingredient needed in the proof of Theorem 1.

Proposition 4.6. Ifci, ..., c, generate Hy(M(K); Z[t*']), then W is a Z[t*']-cobordism
between M and M’, and

det(Qw) = det ({Iki(ci, ¢;) }ij) - An(t)*.

Proof. Throughout the proof we write A = Ay (t). It follows from the definitions and
the discussion preceding the lemma that W is indeed a Z[t*!]-cobordism between M
and M’. We consider the short exact sequence (£22)

0 — FHy(W; Z[t*']) == Hy(W, M; Z[t*]) — H(M; Z[t*']) — 0.

It is clear that the cores of the 2-handles hq,...,h, give rise to a generating set
for Hy(W, M;Z[t*']). By a slight abuse of notation we denote the cores of the 2—
handles by hy,...,h, as well. Note that each h; then naturally defines an element
[h;] € Hy(W, M;Z[t*']). By Lemma 24, there exist ki,...,k, € FHy(W;Z[t*]),
such that «(k;) = A - [hy] € Hy(W, M; Z[t*Y]), i = 1,...,n.

Lemma 4.7.
ki . k’j = A2 . lkt(Ci, Cj).

Proof. We denote the infinite cyclic covers of M and X = X(K) by M and X. By
Lemma P24 we can find surfaces F1, ..., F, in M such that 0F; = Ac;. We can arrange
the surfaces such that F; and tkcj are in general position for any 1, j, k.
We first consider the case i # j. We then consider the surface
1 1
in W where we think of A - h; and A - ¢; as a disjoint union of appropriate translates

of the surface h; respectively the curve ¢;. Note that the surface T; is closed and the
image of [T;] in Hy(W, M; Z[t*!]) is the same as the image of A[h;] in Ho(W, M; Z[t*1]).
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Since FHo(W; Z[t*]) < Hy(W, M; Z[t*1]) is injective it now follows that 7} represents
the class k;. Similarly we consider the surface

Tj:=A-h; U (A-¢;x[0,1]) U (F; x1),

where F} is a surface in M which has boundary A -¢;. Note that the surface Tj is
closed and represents the class k;.
We can thus use the surfaces T; and Tj to calculate k; - k;. But it is clear from the

definitions that )

_)7

1
T T = (AF x 5) - (¢ % 5

2
but this clearly equals A - (F; - ¢;) = A% - 1k (i, ¢5).
The case ¢ = j can be proved completely analogously by constructing an appro-

priate surface 7 using the longitude of ¢; with framing ¢; which connects up with

the core of the 2-handle which we had attached to ¢; with framing ¢;. We leave the
details to the reader. This concludes the proof of the lemma. O

Lemma 4.8. The order of the Z[t*']-module
FHy(W; Z[t) /(- . - k)
equals A" 1,

Proof. 1t follows from (E2) and from the definitions that we have the following com-
mutative diagram of maps where the horizontal sequences are exact:

0—— @?:1 kiZ[tﬂ] — @?:1 AhiZ[tﬂ] 0

| | |

0 —— FHy(W; Z[t*']) —= Hy(W, M; Z[t*]) —— H,(M; Z[t*']) — 0.

It then follows that the following sequence of maps
0 — FHQ(W, Z[til])/a{?l, e 7kn) — HQ(W, M, Z[til])/(Ahl, - ,Ahn)
—  H(M;Z[t*]) — 0.
is well-defined and exact. By the multiplicativity of orders (see Lemma E8) it follows
that
order(Hyo(W, M; Z[t]) /(Ahy, . .., Ahy))
= order(FHo(W; Z[t*1]) / (K1, . .., ky)) - order(Hy(M;Z[t*1])).
But the order on the left is clearly A" and the order of H;(M;Z[t*!]) equals A by
the definition of A. This concludes the proof of the lemma. O

Using Lemma B-T we now see that

det<Qw) = det({A2 lkt(Ci, Cj)}ij) . A—Q(n—l) = det({lkt(ci, Cj)}ij) . AQn . A—Q(n—l)
= det({lkt(ci, Cj)}ij) . AQ.
[
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5. THE MAIN THEOREM

5.1. Statement of the main theorem. In this section we will state a slightly
stronger version of our main theorem. In order to state the theorem we first have to
recall the following definition: A crossing change is a positive crossing change if it
turns a negative crossing into a positive crossing. Otherwise we refer to the crossing
change as a negative crossing change.

/ positive crossing change \

/ negative crossing change \
«“_» « _|_77

The following theorem is now our main result, it clearly implies Theorem [ from
the introduction.

Theorem 5.1. Let K be a knot and let A = A(t) be an n x n—matriz over Z[t*!]
such that BI(K) = A(A) and such that A(1) is diagonalizable over Z. We denote the
number of positive eigenvalues of A(1) by ny and we denote the number of negative
eigenvalues by n_. Then K can be turned into a knot with Alexander polynomial one
using ny negative crossing changes and n_ positive crossing changes.

There are two ingredients in the proof of Theorem. The homological part was given
in Proposition B23 and Proposition BEB. The main topological tool will be Lemma b3
which we will state in the following section.

Remark 5.2. The theorem applies also to knots in Z-homology spheres. In general,
such a knot can not be unknotted using ‘crossing changes’ (i.e. using surgeries along
curves which bound nice disks) since the knot might not even be null-homotopic. But
any knot can be turned into Alexander polynomial one knots, using n(/’) unknotting
moves.

5.2. The main technical lemma. In order to state our main technical lemma we
need a few more definitions:

Definition 5.3. Let K C S% be a knot. A (based) disk D C S? is called nice
if the disk is embedded (that is the unbased disk is embedded), if it intersects K
transversely and if it intersects K exactly twice with opposite signs.

Definition 5.4. Let D, D’ be embedded disks in S®. We say that the disk D precedes
the disk D" if D’ and D intersect transversely and if D' N oD = ().

As an example, consider the disks in Figure [, then the blue (dashed) disk precedes
the green (solid) disk, but not vice versa.
We can now state our main technical lemma. It will be proved in Section B.
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v,

FIGURE 1. The blue (the dashed one) and green disks.

Lemma 5.5. Let K be a knot and let xy, ..., x, be elements in Hy(X(K);Z[t*]).
Let p;;(t) € Z[t*"], i,5 € {1,...,n} be such that

B a) = P2 € Q(1)/2*) and py (1) = (™)
Ak (t)

for any i and j. Then there exists an ordered set {D1,...,D,} of based nice disks
with the following properties:

(1) fori < j the disk D; precedes D;,

(2) for any i the based curve ¢; := 0D; represents x;,

(3) if fori=1,...,n we equip ¢; = OD; with the framing p;;(1), then

pi;(t)

(e ) = X2 s € Q).

for any i and j.

5.3. Proof of Theorem b1 assuming Lemma 55, We will now prove Theorem
b1 using Lemma B3, Let K be a knot. We write A = Ag(t). Let A = A(t) be an
n x n—matrix over Z[t*!] such that BI(K) = A\(A) and such that A(1) is diagonalizable
over Z. We denote the number of positive eigenvalues of A(1) by n, and we denote
the number of negative eigenvalues by n_.

Note that since A(1) is diagonalizable over Z we can find an invertible matrix P
over Z such that PA(1)P" is diagonal over Z. We can thus, without loss of generality
assume, that A(1) is diagonal.

The matrix A(t) is in particular a presentation matrix for the Alexander module.
It follows that det(A(¢)) = £Ak(t) and in particular det(A(1)) = 1. The entries on
the diagonal of A(1) are therefore either +1 or —1. We now denote by €y,...,¢€, the
diagonal entries. Given 4,5 € {1,...,n} we denote by b;;(t) € Z[t*!] the polynomial
which satisfies

ij—entry of A(t) A
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We denote by ey, ..., e, the canonical generating set of Z[t*!]"/AZ[t*']" and we
denote by z1,...,x, the images of ey, ..., e, under the isometry \(A) — BI(K). By
Lemma B3 there exists an ordered set {Dy,..., D,} of based nice disks with the
following properties:

(1) for any ¢ < j the disk D; precedes D;,
(2) for any i the based curve ¢; := 0D; represents x;,
(3) if fori =1,...,n we equip ¢; = 0D; with the framing b;(1), then
bi; ()
lkt<Ci,Cj) = ]T,
for any ¢ and j.

We now consider the disk D;. After an isotopy of S® we can assume that it is

‘standard’ as in Figure & on the left. We now perform e;—surgery on the unknot ¢; =

FIGURE 2. A nice disk in standard position and the result of adding a
full +1-twist along the disk.

OD;. The resulting 3—manifold is again S3. Furthermore the knot K, which is defined
as the image of K in the surgery S?, is obtained from K, := K through adding a full
e;-twist along the disk (see Figure ). Adding a full €;—twist corresponds to a (—e;)—
crossing change in an appropriate diagram of K. The fact that D, precedes D, ..., D,
implies that the disks Ds, ..., D, are ‘unaffected’ by the surgery, in particular for
J =2,...,n, 0D; is again an unknot and for 2 < ¢ < j, D; precedes D;. We can
therefore iterate this process, and perform ¢;—surgery along the unknots ¢; = 0D; for
it =2,...,n. As given i < j the disk D, precedes D;, the consecutive surgeries do
not affect the remaining disks, in particular at each step the remaining curves are
unknots in the 3-sphere.

We denote the resulting knots by Ko, ..., K,. As above, for each ¢ = 2,...,n the
knot Kj; is obtained from K; ; by doing an ¢;—crossing change. In particular K = K
can be turned into the knot J := K, using n, negative crossing changes and n_
positive crossing changes. It remains to show that A, (t) = 1.

Fori=0,...,n—1 we now denote by W; the result of adding 2-handles along c;
to M(K;) x [0,1] with framing €;;. Adding a 2-handle gives a cobordism between
the original manifold and the surgered 3—manifold. In particular we see that OW; =
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—M(K;)UM (K;;1). We can also add all the 2-handles simultaneously along ¢y, ..., ¢,
with framings €,..., ¢, and we thus obtain a 4-manifold W which is diffeomorphic
to the union Wiy,..., W, along the corresponding boundaries. Note that oW =
—M(K) U M(J). By the discussion of Section B=3 the manifold W has furthermore
the following properties:

(1) H1{(W;Z) = Z,

(2) Hy(M(K);Z) — Hi(W;Z) and H,(M(J);Z) — H,(W;Z) are isomorphisms,

(3) Hy(W;Z[t*']) = Hi(M(K); Z[t*'])/(c1, - . ., ¢n) = O.
Furthermore, by Proposition B-G we see that

det<Qw> = det ({1kt(ci7 Cj)}ij) . AQ = det(A(t)*l) : A2 = Ail . Az = A.

It now follows from Proposition B3 that the knot J = K, has trivial Alexander

polynomial. This concludes the proof of Theorem B, modulo the proof of Lemma
b4 which will be given in the next section.

6. PROOF OoF LEMMA B H

In this section we shall prove Lemma B3. The proof is given in a couple of steps.
First, we find pairwise disjoint nice disks Dy,..., D,, with ¢; = 0D, such that for

any i,j = 1,...,n we have Bl(c;, ¢;) = pXT(:)) € Q(t)/Z[t*']. This is an adaptation
of Fogel’'s argument [Fo94, p. 287] and is done in Section Bl The property that
Bl(cj, cj) = 2ill) e Q(t)/Z[t*!] is weaker than that Ik (ci,cj) = 2il) e Q(t), it only

A(t) A(t)
means that 1k;(¢;, ¢;) — pij(%) is an element of Z[t*!].
To ensure that lk,(c;,c;) — pg(%) = 0 we need to perform several moves on the

disks. We introduce four types of moves in Section B33 and one type in Section B4.
These moves potentially introduce intersections among disks D, ..., D, therefore an
analysis must be careful and take into account the ordering of disks. In our proof we
perform only the moves that preserve the ordering of the disks. The details are given
in Section G4.

6.1. Finding nice based disks. In this section we prove the following lemma.

Lemma 6.1. Let K be a knot and let xy, . .., x, € Hi(X(K);Z[t*']). Then there exist
n disjoint nice based disks D+, ..., D, such that fori=1,...,n the curve ¢; :== dD;
represents x;.

This lemma is a slight generalization of a result by Fogel [Fa94, p. 287]. The proof
we give is also basically due to Fogel.

Proof. Let xy,...,1, € H(X(K);Z[t*']). The multiplication by ¢ — 1 is an iso-
morphism of H, (X (K);Z[t*']) (see e.g. [Cex7d]). We can therefore find yy,...,y, €
Hy(X(K); Z[t*']) such that (t—1)y; = x;,i = 1,...,n. We now represent y, . .., y, by
disjoint based curves dy, ..., d,. (By doing crossing changes on the curves dy, ..., d,,
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we can without loss of generality assume that the unbased curves are unknotted in
S3, this justifies the illustration below, but is not necessary for the argument.) We
also pick disjoint embedded oriented disks 51, ..., S, with the following properties:

(1) for i = 1,...,n the disk S; intersects K precisely once with positive intersec-
tion number,
(2) for i = 1,...,n the curve m; := 05, intersects d; in precisely one point,

(3) for i # j the curves m; and d; are disjoint.
We refer to Figure B for a schematic picture. Now note that for each ¢ the unbased

my;

\ I v

I21

% L ' _e A

/ —
\ ///////
d S S S S S S S S S S \

X S

FIGURE 3. Construction of nice disks.

curve m;d;m; ldi_ ! bounds a nice disk D; which can be placed in a small neighborhood
around the disk S; and the unbased curve d;. (We again refer to Figure B for a
schematic picture.) By construction the disks Dy, ..., D, are disjoint. On the other
hand, since m; is a meridian we see that m;d,m; 1d;1 = (mid;m; 1) - d; ! represents

ty; — y; = (t — 1)y; = x; in the Alexander module. If we equip Dy, ..., D, with the
basings of the based curves dy, ..., d, we thus obtain the required based disks. O

6.2. Properly arranged disks. The following discussion will be essential in the
remainder of the proof.

Definition 6.2. Let K C S® be a knot and let D;, ..., D, be nice based disks. We
say that they are properly arranged if the following conditions hold:

(1) the segment S := [0,1] x 0 x 0 C R® C S? is part of the knot K, and the
orientation of K agrees with the canonical orientation on that segment,

(2) all intersection points of the disks with the knot K lie on S,

(3) for ¢ < j the disk D; precedes the disk D;.
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Remark 6.3. If Dy,..., D, are nice based disks that are disjoint, then it is straight-
forward to see that a segment S C K exists which satisfies Conditions (1) and (2)
from Definiton G2

Note that if the disks Dy, ..., D, are properly arranged then we can find a tubular
neighborhood of the segment S of the knot K which is isotopic to the picture shown
in Figure @. We call such a neighborhood of S a standard segment. We refer to each of
the 2n components of the disks as a piece. The orientation on the disks endows each
piece with an orientation, which we refer to as positive or negative depending on the
intersection with the oriented S. Finally each cube in S which contains precisely two
pieces is called a subsegment. In the following we will furthermore use the expressions
‘adjacent pieces’ and ‘piece to the left’ and ‘piece to the right’ with the obvious
meanings.

We henceforth equip the set of points S with the canonical ordering coming from
the ordering on the interval [0,1]. If the disjoint nice disks Dy, ..., D,, are properly
arranged then the intersection points are of the form z; < 25 < -+ < 29,. Given
i €{1,...,2n} we denote by o(i) € {1,...,n} the integer which has the property
that the disk D,(; intersects S in the point z;. We refer to the ordered set

{0(1),...,0(2n)}

as the arrangement of the properly arranged disks Dy, ..., D,. We refer to Figure @

SCK
Dy1y Dya) Do3y Doy D (2n) /

piece with positive piece with negative
orientation orientation

FI1GURE 4. Properly arranged disks.

for an illustration.

6.3. Type R and F moves. Given properly arranged nice disks Dq,..., D, we
consider the following local moves which produce new sets of properly arranged nice
disks D1,...,D!. The subsequent figures show moves on sets of properly arranged
disks which take place in subsegments, in particular no other disks and no basings
are allowed in these subsets of S3.
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D; D,

D;

FIGURE 7. Type F; move.

If j < i, then a type R; move consists of the change as drawn on Figure B, i.e. we
push the disk D; ‘on the right’ over the disk D; ‘on the left’. Note that the isotopy
types of the boundary curves are unchanged, so the twisted linking numbers of the
new boundary curves agree with the twisted linking numbers of the old boundary
curves. The resulting disk D’ precedes D, because D; precedes D;.

If 5 > 4, then a type R; move consists of the move shown in Figure B, which is
almost of the same form as the type Ry move, except that we now push the disk D;
‘on the left” over the disk D; ‘on the right’. Note that D}, ..., D] are again properly
arranged.

A type F| move consists of applying the move shown in Figure @ to two adjacent
pieces with opposite orientations.

A type Fy; move consists of applying the move shown in Figure B to two adjacent
pieces with opposite orientations.

Remark 6.4. One could define F' moves for two adjacent pieces with the same orien-
tation, but we will not need that.
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D; D,

Fi1GURE 9. Curve d for different orientations of the pieces.

We denote by D1, ..., D) the disks resulting from applying a type F; move or a type
F, move to disks Dy, ..., D,. We write ¢, :== 0D, and ¢} := dD; for l = 1,...,n. Note
that neither move creates any new intersections between the disks. In particular
D, ..., D! are again properly arranged. On the other hand the isotopy type of
the boundary curves changes. To state how the twisted linking numbers change we
consider the curve d which is given by concatenation of the following paths:

(1) a path from the base point * along the based curve ¢; = 0D; to a point P; on
the piece of D; involved in the type F' moves,

(2) a horizontal path to the corresponding point P; on ¢; = dD;,

(3) a path from the point P; on ¢; to the base point * along the based curve ¢;.

We refer to Figure 8 for an illustration. We then denote by

the image of d under the epimorphism m(Xx) — Z given by sending the oriented
meridian of K to 1. It is straightforward to see that k is independent of the choice of
P; made.
Lemma 6.5. For any r,s with {r,s} # {i,j} we have

Ik, (c., ) = k(e cs),

furthermore
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(1) if i # j, then

(6.2) Ik(c}, ) = Ik(ci, ) + et" (" — 1) and k() ¢}) = Ik(cjoe;) + et F(t" — 1),
(2) if i = j, then

(6.3) Ik (c), &) = Tky(ciy¢;) + et™(t7 — 1) + et F(t77 — 1),

where € = —1 if we apply a type I} move and € = 1 if we apply a type F» move,
furthermore n = —1 if the piece on the left has positive orientation and n = 1 if the
piece on the left has negative orientation.

We will first consider the case of a type F} move such that the piece on the left has
positive orientation.

Case 1. i # j. It is clear, that for {r,s} # {i, 7} we have lk;(c}, ¢}) = lke(cg, ¢;). We
will now show that

Ik (), c}) = Ik;(cj, c;) + (¢ — 1).

The claim regarding lk;(c}, ¢;) then follows from the antisymmetry of the twisted
linking number.

First recall that the twisted linking numbers only depend on isotopy invariants of
the curves. We can therefore ignore the disks and we can also first apply a type R;
move, which is an isotopy. We therefore have to compare the twisted linking numbers

of the two sets of curves shown in Figure M0.

27 ]
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FiGUurE 10. Composition of the inverse of a type R; move and a type F' move.

We pick a based immersed surface F' such that 0F = Ak(t)-¢;. In the subsegment
we can and will assume that the surface F' is orthogonal to the plane which contains
the diagram and that it points ‘upwards’. We now obtain a surface F’ with 0F’ =
A (t)- ¢ by cutting out a small rectangle of I around the modification. The surfaces
F and F’ in the neighborhood of the modification are sketched in Figure . Note
that in Figure [ we only show one sheet of the surfaces F' and F’, in reality each
sheet which is drawn should be considered A (¢)-times.

We are now interested in the difference between F'-¢; and F’-¢,. In the subsequent
discussion we will continue with the notation in the definition of F - ¢; (see Section
B2). We consider the intersection points P and @) of F' and ¢; as shown in Figure [
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[ \

NInn
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FIGURE 11. One sheet of F' respectively F” in the subsegment glued
to ¢; as in Figure M. The surfaces go ‘vertically out of the plane’ in
the direction of the reader. On the left, the lower vertical sheet thus
intersects ¢; in two points P and ). On the right, we pushed the surface
across ¢;, and thus removed the intersection points.

FIGURE 12. The curves [p and [y in the definition of I - c¢. Here the
sheets are again pointing outwards toward the reader. The upper sheet
lies above ¢; and thus has no intersections with ¢;, whereas the lower
sheet intersects ¢; in two points P and Q).

on the left. It is clear that ep = —1 and €g = +1. It furthermore follows easily from
the definitions (see also Figure [2) that

o(lp) = t* and ¢(lg) = t* 1.
(The point is that in the definition of ¢(Ip) the curve {p wraps around the knot once
more in the negative direction.) Now recall that F' and F” consist of Ak (t) copies of
the sheets indicated in the diagrams. It now follows that
lki(c},c;) = F'-¢

= F-ci—Ag(t) - epod(lp) — Ax(l) - €q 0(lg)

= F.¢— Ag(t)(th=1 — k)

= Ik(cj, ;) — A ()Pt = 1).
This concludes the proof in the case that 7 # j.
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Case 2. i = j. We again pick a based immersed surface F' such that 0F = Ag(t)-¢;
In a neighborhood of the modification we can and will assume that the surface F' is
orthogonal to the plane which contains the diagram and that it points ‘upwards’. We
again obtain a surface F’ with OF" = Ag(t) - ¢; by cutting out a small rectangle of
F around the modification. The surfaces F' and F” in the neighborhood of ¢; and the
modification are sketched in Figure . Note that F' N ¢; contains two intersection

FIGURE 13. One sheet of F respectively I’ in the subsegment. The
surfaces F' and F’ point vertically outwards towards the reader. They
are indicated only in a small neighborhood of the curves and they have
to be extended in the direction of the reader beyond what is shown. In
particular on the left the lower horizontal vertical sheet of F' intersects
the two vertical sheets of F'. On the other hand, on the right the two
vertical sheets of F” intersect the lower horizontal sheet of F”.

points, P and ), which do not appear in F’' N ¢, in turn F’ N ¢, contains two new
intersection points, namely P’ and @)'. We refer to Figure I4 for an illustration. Note

" V
s
4

FIGURE 14. Extra intersection points of F' and ¢; respectively of F’
and ¢,. Here we show only parts of the surfaces F' and F’, the two
parts are again meant to point outwards towards the reader.

that in Figure @ we now only indicate the parts of the sheets of F' and F’ which
contain the extra intersection points. A careful consideration of the intersection points
now shows that

ki (ch, ¢)) = k(s ) —t* (7 = 1) —t7F(t — 1).
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Ficure 15. Type T'(n) move.

We leave the details to the reader.

This concludes the proof of Lemma B33 in the case of a type F; move such that
the piece on the left has positive orientation. It is straightforward to verify that the
other cases of Lemma B3 can be proved completely analogously. We again leave the
details to the reader.

6.4. The type T'(n) move. A type T'(n) move consists of applying the move shown
in Figure I3 to the based disk D;. This move is in fact an isotopy of the disk D; as
will be shown later in Lemma E@. In particular this move leaves all twisted linking
numbers unchanged. The move is important because it allows us to modify the term
k(D;, D;) which appears in the F'-moves, see (6I). More precisely, suppose we have
two adjacent pieces of D; and D;, with the piece corresponding to D; to the left. Let
k € 7Z be the integer which is defined as in the discussion of the type F' moves. If we
first apply a type T'(n) move to D;, then

(6.4) k(D! D;) = k(D;, D;) + n.

We will prove the following lemma which shows that the type T'(n) move does not
change the isotopy type of the disk involved.

Lemma 6.6. The two disks in Figure I8 are isotopic relative to the boundary of the
cube which contains the figures.

FIGURE 16. Isotopic disks in the statement of Lemma B8.
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Proof. We first consider the set of isotopies (relative to the boundary of the cube) in
Figures 1 and I8. We then iterate this process k times. The lemma now follows

one full positive twist

FI1GURE 17. First isotopy in the proof of Lemma B8.

FIGURE 18. Second set of isotopies in the proof of Lemma BG8.

from first adding a canceling pair of a full k£ twist and a full —k twist to the disk on
the left hand side of Figure 8. 0J

6.5. Proof of Lemma BH. We are now in a position to prove Lemma b3.

Proof of Lemma 4. Let K be aknot and let o, . . ., x,, be elements in H, (X (K); Z[t*!]).
Let p;;(t) € Z[t*'], i,5 € {1,...,n} be such that

Bi(as, ;) = K205 € QO/2iE) and pe) = pi(t™)

for any ¢ and j. We will prove the following claim.
Claim. Let | € {1,...,n}. Then there exist based nice disks Dy,..., D, with the
following properties:

(1) the disks Dy, ..., D, are properly arranged,

(2) for any i the based curve ¢; := 0D; represents z;,

(3) the disks Dyyq, ..., D, are disjoint,

(4) the first 21 entries of the arrangement of Dy, ..., D,, are

{1,1,2,2,..., 1,1},
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(5) iffori=1,...,n we equip ¢; = dD; with the framing p;;(1), then

ki (e, ¢) = ijé)) € Q(t),

for any i € {1,...,{} and j € {1,...,n}.

It is clear that the statement of the claim for [ = n is precisely the statement of
Lemma b=3.

We will prove the claim by induction on [. We begin with [ = 0. First note
that Lemma B allows us to find disjoint disks Dy, ..., D, such that (2) and (3)
are satisfied. The remark after Definition B2 shows that D,,..., D, are properly
arranged. Conditions (4) and (5) for [ = 0 are empty.

Now suppose that the statement of the claim holds for [ — 1. We thus pick based
nice disks Dy, ..., D,, which satisfy the statement of the claim for [ —1. We first apply
the type Ry move several times to the ‘left most’ intersection point of D; so that the
first 2(1 — 1) + 1 entries of the arrangement of Dy, ..., D, are

{1,1,2,2,...,1— 1,1 —1,1}.

We repeat this procedure with the ‘right most’ intersection point of D; so that after
several further type R; moves the first 2/ entries of the arrangement of the resulting
disks Dq,..., D, are

{1,1,2,2,..., 01— 1,1 —1,1,1}.

Since we applied type R; moves it follows that the disks are properly arranged.
Fori=1,...,n we equip ¢; := 0D; with the framing p;;(1). We denote by ¢;;(?),
i,j € {l,...,n} the polynomials which satisfy

lkt(C“C‘]) o Q’l]< )

Akt
Given s € {1,...,n} we now also consider the following property:
(55) for any i € {1,...,l} and j € {1,...,s} we have
Pi; (t)
ki(c;,c;) = t).
t<c C]) AK(t) € Q( )

Note that (5;,—1) holds since the disks satisfy Property (5) for { — 1 and since the p;;
and ¢;; are both antisymmetric in 7 and 7. We now proceed with two steps, first we
will arrange the disks such that (5;) holds, and then we will furthermore modify the
disks such that (55) holds for any s > [.

(a) Recall that by the discussion in Section B we have

qu(1) = 1k(cr, ) |1=1 = framing of ¢; = py(1).

It thus follows that g;(1) — py(1) = 0. Note that furthermore p;(t) = py(t~') by
assumption and that g;(t) = gu(t~1) by the symmetry of [. It now follows that we
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can write .
qu(t) —pu(t) = Z ai(t' +t7)
i=0
for some ay, ..., a; € Z with Zf:o a; = 0. Put differently, we can write
k
qu(t) — pu(t) = bi(t =t =D 47

i=1

for some by, ..., b, € Z.

Considering (633) and (B4) it follows easily that for i = 1,..., k we can now apply
|b;| times an appropriate combination of a type T'(n) move together with either a type
F} move or a type F, move to arrange that

I (e, 1) = 2’;(2) € Q).

This concludes the proof of (5;).
(b) We now suppose that we have disks which satisfy Properties (1)...(4) and
(5s_1) for some s — 1 > [. It follows from the discussion in Section B that

QSl(l) = lkt(CSa Cl)'tzl - 1k<057 Cl) =0= psl(1)~
It thus follows that gy (1) — ps(1) = 0. We can therefore write
k
ga(t) = palt) = > bt =)
i=—k

for some b_y, ..., by € Z. We now apply the type Ry moves several times so that the
right hand piece of D, is adjacent to the piece of D, with the opposite orientation.
Considering (E2) and (632) it follows easily that for i = —k, ..., k we can now apply
|b;| times an appropriate combination of a type T'(n) move together with either a type
F; move or a type F» move to arrange that

pa(t)
= A;(t) € Q(¢).

Finally we conclude with several type R; moves so that the arrangement is unchanged.
Note that the resulting disks are again properly arranged.

After Steps (a) and (b) the resulting disks clearly have the required properties.
This concludes the proof of the claim and thus of Lemma B3, O

k¢ (e, 1)
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