
TAUT SUTURED MANIFOLDS AND TWISTED HOMOLOGY

STEFAN FRIEDL AND TAEHEE KIM

Abstract. We give a necessary and sufficient criterion for a sutured manifold
(M,γ) to be taut in terms of the twisted homology of the pair (M,R−).

1. Introduction

A sutured manifold (M,γ) is a compact, connected, oriented 3-manifoldM together
with a set of disjoint annuli γ on ∂M which turn M naturally into a cobordism
between oriented surfaces R− = R−(γ) and R+ = R+(γ) with boundary. We refer to
Section 2.2 for the precise definition.

We say that a sutured manifold (M,γ) is balanced if χ(R+) = χ(R−). Balanced
sutured manifolds arise in many different contexts. For example 3-manifolds cut
along non-separating surfaces naturally give rise to balanced sutured manifolds. For
the remainder of the introduction we will only be concerned with balanced sutured
manifolds. Later on we will also consider the case of general sutured manifolds.

Given a surface S with connected components S1∪· · ·∪Sk we define its complexity
to be χ−(S) =

∑k
i=1max{−χ(Si), 0}. Following Gabai [Ga83, Definition 2.10] we

say that a sutured manifold (M,γ) is taut if M is irreducible and if R− and R+

have minimal complexity among all surfaces representing the homology class [R−] =
[R+] ∈ H2(M,γ;Z).

Given a representation α : π1(M) → GL(k,F) over a field F we can consider the
twisted homology groups Hα

∗ (M,R−;Fk). In this paper we give a necessary and
sufficient criterion for a balanced sutured manifold (M,γ) to be taut in terms of the
twisted homology of the pair (M,R−). More precisely, we will prove the following
theorem:

Theorem 1.1. Let (M,γ) be an irreducible balanced sutured manifold with M ̸=
S1 × D2 and M ̸= D3. Then (M,γ) is taut if and only if Hα

1 (M,R−;Ck) = 0 for
some unitary representation α : π1(M) → U(k).

To the best of our knowledge both directions of the theorem are new. Whereas the
‘if’ direction can be proved using classical methods the ‘only if’ direction uses the
recent revolutionary work by Agol [Ag08], Liu [Liu11], Przytycki-Wise [PW12] and
Wise [Wi12].
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The paper is organized as follows: In Section 2.1 we recall the definition of the
Thurston norm, which will play an important role in the proof of Theorem 1.1. In
Section 2.2 we introduce balanced sutured manifolds and in Section 2.3 we define
twisted homology groups. The ‘if’ direction of Theorem 1.1 is proved in Section 3
and the ‘only if’ direction of Theorem 1.1 is proved in Section 4.

Conventions and notations. All 3-manifolds are assumed to be oriented, compact
and connected, unless it says explicitly otherwise. By F we will always mean a field.

2. Definitions

2.1. The Thurston norm. Let N be a 3-manifold. It is well–known that any class
in H1(N ;Z) is dual to a properly embedded oriented surface. The Thurston norm of
ϕ ∈ H1(N ;Z) is defined as

∥ϕ∥T := min{χ−(Σ) |Σ ⊂ N properly embedded and dual to ϕ}.

Thurston [Th86] showed that ∥ − ∥T is a seminorm on H1(N ;Z) which thus can be
extended to a seminorm on H1(N ;Q) which we also denote by ∥ − ∥T .

2.2. Sutured manifolds. We now recall the notion of a sutured manifold. Loosely
speaking a sutured manifold is a cobordism between oriented surfaces with boundary.
More precisely, a sutured manifold is a 3-manifold M with non-trivial boundary and
together with a decomposition of its boundary

∂M = −R− ∪ s× [−1, 1] ∪R+

into oriented submanifolds where the following conditions hold:

(1) s consists of oriented simple closed curves,
(2) ∂R− = R− ∩ (s× [−1, 1]) = s× {−1} as oriented curves,
(3) ∂R+ = R+ ∩ (s× [−1, 1]) = s× {+1} as oriented curves,
(4) R− and R+ are disjoint.

We denote by γ the union of the annuli s × [−1, 1] together with an orientation of
the ‘sutures’ s = s × 0. Note that R+ and R− are determined by γ, we therefore
usually denote a sutured manifold by (M,γ) and we write R±(γ) = R±. The notion
of sutured manifolds is due to Gabai [Ga83], but our definition differs slightly from
Gabai’s definition in so far as we do not allow ‘toroidal sutures’ and as we restrict
ourselves to connected 3-manifolds.

We now recall the following definitions from the introduction: Let (M,γ) be a
sutured manifold.

(1) (M,γ) is called balanced if χ(R+) = χ(R−). (This definition agrees with
the definition given by Juhász [Ju06] with the slight difference that we allow
R± to have closed components and that do not require that every boundary
component of M contains a suture.)
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(2) (M,γ) is said to be taut if M is irreducible and if R− and R+ have minimal
complexity among all surfaces representing the homology class [R−] = [R+] ∈
H2(M,γ;Z).

The following well-known lemma says that given a taut sutured manifold (M,γ) in
almost all cases the surfaces R±(γ) are incompressible.

Lemma 2.1. Let (M,γ) be a taut sutured manifold. Then one of the following holds:

(1) R− and R+ are incompressible, or
(2) M = S1 ×D2 and γ is a union of annuli of the form [−1, 1]× ∂D2, or
(3) M = D3 and M has at least two sutures.

We conclude this section with two examples of balanced sutured manifolds.

(1) Let R be an oriented surface, then (R × [−1, 1], ∂R × [−1, 1]) is a sutured
manifold with R± = R×{±1}. We refer to this sutured manifold as a product
sutured manifold.

(2) Let Y be a 3–manifold with trivial or toroidal boundary. Let R ⊂ Y be
an embedded compact oriented surface with boundary such that Y \ R is
connected. Furthermore, if Y has non-empty toroidal boundary we assume
that R is properly embedded and intersects each boundary torus at least once
in a homologically essential curve. We pick a tubular neighborhood R×[−1, 1]
such that if Y has non-empty boundary then we have ∂(R × [−1, 1]) ∩ ∂Y =
∂R× [−1, 1]. We then define

Y (R) = (Y \R× (−1, 1), ∂R× [−1, 1])

which is clearly a balanced sutured manifold. Note that R± = R × {±1}.
If Y is furthermore irreducible, then it is well-known that R is Thurston
norm minimizing in Y if and only if Y (R) is taut. (The ‘only if’ direction is
obvious and the ‘if’ direction follows from [Ga83, Corollary 5.3] and [Th86,
Corollary 2].)

2.3. Twisted homology groups. We recall the definition of twisted homology
groups and discuss some of their properties. More information can for example be
found in a previous paper by the authors [FK06].

Let X be a topological space, Y ⊂ X a (possibly empty) subset and x0 ∈ X a
point. Let α : π1(X, x0) → GL(k,F) be a representation. This naturally induces a
left Z[π1(X, x0)]–module structure on Fk.

Denote by X̃ the set of all homotopy classes of paths starting at x0 with the usual
topology. Then the evaluation map p : X̃ → X is the universal cover of X. Note that
g ∈ π1(X, x0) naturally acts on X̃ on the right by precomposing any path by g−1.

Given Y ⊂ X we let Ỹ = p−1(Y ) ⊂ X̃. Then the above π1(X, x0) action on X̃

gives rise to a right Z[π1(X, x0)]–module structure on the chain groups C∗(X̃), C∗(Ỹ )
and C∗(X̃, Ỹ ). Therefore we can form the tensor product over Z[π1(X, x0)] with Fk,
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we define
Hα

i (X;Fk) = Hi(C∗(X̃)⊗Z[π1(X,x0)] Fk)),

Hα
i (Y ⊂ X;Fk) = Hi(C∗(Ỹ )⊗Z[π1(X,x0)] Fk),

Hα
i (X, Y ;Fk) = Hi(C∗(X̃, Ỹ )⊗Z[π1(X,x0)] Fk)).

Note that if we have inclusions Z ⊂ Y ⊂ X then we get an inclusion induced map
Hα

i (Z ⊂ X;Fk) → Hα
i (Y ⊂ X;Fk). Also note that we have an exact sequence of

complexes

0 → Ci(Ỹ )⊗Z[π1(X,x0)] Fk → Ci(X̃)⊗Z[π1(X,x0)] Fk → Ci(X̃, Ỹ )⊗Z[π1(X,x0)] Fk → 0

which gives rise to a long exact sequence

(1) · · · → Hα
i (Y ⊂ X;Fk) → Hα

i (X;Fk) → Hα
i (X,Y ;Fk) → . . . .

Now denote by Yi, i ∈ I, the path connected components of Y . Pick base points
yi ∈ Yi, i ∈ I, and paths γi : [0, 1] → X with γi(0) = yi and γi(1) = x0. Then we get
induced representations αi(γi) : π1(Yi, yi) → π1(X, yi) → π1(X, x0) → GL(k,F) and
induced homology groups H

αi(γi)
j (Yi;Fk) using the universal cover of Yi.

In [FK06] we proved the following lemma:

Lemma 2.2. Given γi there exists a canonical isomorphism

Hαi
j (Yi ⊂ X;Fk) ∼= H

αi(γi)
j (Yi;Fk).

The isomorphism type of Hα
j (X,Y ;Fk) does not depend on the choice of the base

point. In most situations we can and will therefore suppress the base point in the
notation and the arguments. We will also normally write α instead of α(γi). Further-
more we write Hα

j (Y ;Fk) for ⊕i∈IH
α
j (Yi;Fk). With these conventions the long exact

sequence (1) induces a long exact sequence

· · · → Hα
j (Y ;Fk) → Hα

j (X;Fk) → Hα
j (X,Y ;Fk) → . . . .

For the proof of Theorem 1.1 we will need the following well-known results on
twisted homology groups:

Lemma 2.3. Let (X, Y ) be a pair of spaces with X path connected and with Y ̸= ∅.
Let α : π1(X) → GL(k,F) be a representation. Then

H0(X, Y ;Fk) = 0.

For the reader’s convenience we provide a quick proof of Lemma 2.3.

Proof. Let A be a group and let α : A → GL(k,F) be a representation. Let φ : B → A
be a group homomorphism. By [HS97, Section VI.3] we obtain the following commu-
tative diagram of exact sequences

0 → {α(φ(b))v − v|b ∈ B, v ∈ Fk} → Fk → Hα◦φ
0 (B;Fk) → 0

↓ ↓ ↓
0 → {α(a)v − v|a ∈ A, v ∈ Fk} → Fk → Hα

0 (A;Fk) → 0.



TAUT SUTURED MANIFOLDS AND TWISTED HOMOLOGY 5

Note that the vertical map on the left is injective. It follows that Hα◦φ
0 (B;Fk) →

Hα
0 (A;Fk) is surjective. The lemma is an immediate consequence of this fact. �

We also recall the following well-known duality theorem (see e.g. [CF10, Theo-
rem 2.1] and [FK06, Lemma 2.3] for a proof).

Theorem 2.4. Let X be an n–manifold together with a decomposition ∂X = Y1 ∪ Y2

where Y1 and Y2 are submanifolds of ∂X with ∂Y1 = ∂Y2. Let α : π1(X) → GL(k,F)
be a representation. We denote by α† the representation which is given by (α†)(g) :=
α(g−1)t for g ∈ π1(X). Then

Hα
n−i(X, Y1;Fk) ∼= Hα†

i (X, Y2;Fk).

We obtain the following corollary:

Corollary 2.5. Let M be a 3-manifold, S a non-trivial proper subsurface of ∂M . Let
α : π1(M) → GL(k,F) be a representation, then

Hα
0 (M,S;Fk) = Hα

3 (M,S;Fk) = 0.

Proof. It follows immediately from Lemma 2.3 that Hα
0 (M,S;Fk) = 0. Let T be the

closure of ∂M \ S. We then apply Theorem 2.4 to ∂M = S ∪ T and we see that

Hα
3 (M,S;Fk) ∼= Hα†

0 (M,T ;Fk),

which in turn is zero by Lemma 2.3. �

Given a pair of CW-complexes (X,Y ) and a representation α : π1(X) → GL(k,F)
we now write

bαi (X, Y ;Fk) = dimHα
i (X,Y ;Fk) and χα(X, Y ;Fk) =

∑
i

(−1)ibαi (X, Y ;Fk).

When α is understood we will drop it from the notation. A standard argument (see
e.g. [FK06]) shows the following lemma.

Lemma 2.6. Let (X,Y ) be a pair of CW-complexes. Let α : π1(X) → GL(k,F) be a
representation, then

χα(X, Y ;Fk) = kχ(X, Y ).

2.4. Twisted invariants and product manifolds. If (M,γ) is a product su-
tured manifold, then it is obvious that H1(M,R±;Fk) = 0 for any representation
α : π1(M) → GL(k,F). We will now see that the converse to that statement is an
easy consequence of work of Long and Niblo [LN91].

Lemma 2.7. Let (M,γ) be a taut sutured manifold with M ̸= D3. If (M,γ) is not a
product sutured manifold, then there exists a unitary representation α : π1(M) → U(k)
such that H1(M,R−;Ck) ̸= 0.
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Proof. Let (M,γ) be a taut sutured manifold. First note that if R− is not connected,
then H1(M,R−;Z) ̸= 0, i.e. the trivial representation already gives rise to non-trivial
homology.

Now suppose that R− is connected. It follows from Lemma 2.1 that either M =
S1 × D2 and R− = I × ∂D2 or R− is incompressible. In the former case it is clear
that H1(M,R−;C) ̸= 0, i.e. the trivial representation has the desired property.

If (M,γ) is not a product sutured manifold, then it follows from [He76, Theo-
rem 10.5] that the map π1(R−) → π1(M) is not surjective. By [LN91, Theorem 1]
the subgroup π1(R−) ⊂ π1(M) is separable, in particular there exists an epimor-
phism α : π1(M) → G to a finite group such that α(π1(R−)) is strictly contained in
α(π1(M)). We then consider the long exact sequence

→ H1(M,R−;C[G]) → H0(R−;C[G]) → H0(M ;C[G]) → 0.

Note that

dimH0(R−;C[G]) =
|G|

|Im(π1(R−) → G)|
>

|G|
|Im(π1(M) → G)|

= H0(M ;C[G]).

It thus follows that H1(M,R−;C[G]) ̸= 0. Finally note that the representation
α : π1(M) → G → Aut(C[G]) ∼= GL(|G|,C) is unitary with respect to the standard
basis of C[G]. The representation α thus has the desired property. �

Remark. Let N be a 3-manifold with empty or toroidal boundary and let R ⊂ N be
a Thurston norm minimizing surface. We write M = N \ νR. Note that R is a fiber
of a fibration N → S1 if and only if N(R) = (M,γ) is a product sutured manifold.
Then the following hold:

(1) By Lemma 2.7 the twisted invariants of (M,γ) corresponding to representa-
tions of π1(M) can detect whether (M,γ) is a product sutured manifold.

(2) In [FV11, FV12b] it is shown that twisted Alexander polynomials correspond-
ing to representations of π1(N) can detect whether R is a fiber or not.

These results are related. In fact one can show fairly easily that (2) implies (1). On
the other hand (1) does not readily imply (2) since a representation of π1(M) does
not necessarily extend to a representation of π1(N).

3. Proof of the ‘if’ direction of Theorem 1.1

3.1. Relationship between the rank of twisted homology and complexities
of surfaces. Given a sutured manifold (M,γ) we say that a surface S is properly
embedded in (M,γ) if ∂S = S ∩ γ. We now define the complexity of (M,γ) to be

x(M,γ) = min{χ−(S) |S properly embedded surface with [S] = [R−] ∈ H2(M,γ;Z)}.

Note that if (M,γ) is taut, then by definition we have x(M,γ) = χ−(R−) = χ−(R+).
Our main technical theorem of this section is the following result:
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Theorem 3.1. Let (M,γ) be an irreducible sutured manifold such that R± have no
disk components. Let α : π1(M) → GL(k,F) be a representation. Then the following
inequality holds:

dim H1(M,R−;Fk) + dim H1(M,R+;Fk) ≥ k
(
χ−(R+) + χ−(R−)− 2x(M,γ)

)
.

The following corollary is now a slight generalization of the ‘if’ direction of Theorem
1.1.

Corollary 3.2. Let (M,γ) be an irreducible balanced sutured manifold and let F be
a field with involution. Assume there exists a unitary representation α : π1(M) →
GL(k,F) such that H1(M,R−;Fk) = 0. Then (M,γ) is taut.

Proof. We start out with the following claim:

Claim.

H1(M,R+;Fk) = 0.

It follows from Theorem 2.4 and the fact that α is a unitary representation that

(2) Hα
2 (M,R+;Fk) = Hα†

1 (M,R−;Fk) = Hα
1 (M,R−;Fk) = 0,

where given an F-vector space V we denote by V the vector space given by the same
underlying abelian group but with involuted F-multiplication. On the other hand it
follows from the assumption that (M,γ) is balanced and from Poincaré duality that

χ(M) =
1

2
χ(∂M) =

1

2
(χ(R−) + χ(R+)) = χ(R+).

This implies by Lemma 2.6 that

χ(M,R+;Fk) = kχ(M,R+) = k(χ(M)− χ(R+)) = 0.

It now follows from (2) and Corollary 2.5 that H1(M,R+;Fk) = 0. This concludes
the proof of the claim.

We first suppose that R− and R+ have no disk components. Since χ−(R±) ≥
x(M,γ), it follows from Theorem 3.1, the assumption that H1(M,R−;Fk) = 0 and
the above claim that

x(M,γ) = χ−(R−) = χ−(R+).

Since M is furthermore assumed to be irreducible it follows that M is taut. This
concludes the proof of the corollary if R− and R+ have no disk components.

We now consider the case that R− or R+ has a disk component. Without loss of
generality we assume that R− has a disk component D. Since H1(M,R−;Fk) = 0 it
follows from the long exact sequence of the pair (M,R−) that the map

H0(R−;Fk) → H0(M ;Fk)
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is injective. In particular H0(D;Fk) → H0(M ;Fk) is injective. It follows from [HS97,
Section VI.3] that we have the following commutative diagram of exact sequences

0 → 0 → Fk → Hα
0 (D;Fk) → 0

↓ ↓ ↓
0 → {α(a)v − v|a ∈ π1(M), v ∈ Fk} → Fk → Hα

0 (M ;Fk) → 0.

We see that the map on the right is injective only if α is the trivial representation.
We thus showed that H1(M,R−;Z) = 0. Since M is connected this is only possible
if R− is also connected, i.e. R− is a disk. It follows that χ−(R−) = 0. Now it suffices
to show that χ−(R+) = 0. By the previous claim, we have H1(M,R+;Fk) = 0. Since
χ(R−) = 1 and M is assumed to be irreducible and balanced, one can deduce that
R+ also has a disk component. Then using the same argument for R− as above, one
can conclude that R+ is a disk, and it now follows that χ−(R+) = 0. �
Example. Let (M,γ) be an irreducible balanced sutured manifold such that H :=
H1(M ;Z) is a torsion-free group. We denote by Q(H) the quotient field of Z[H].
Note that Q(H) is naturally a field with involution and that the homomorphism
π1(M) → H → GL(1, Q(H)) is a unitary representation. We can consider the Z[H]–
module H1(M,R−;Z[H]) and the Q(H)-module H1(M,R−;Q(H)). It follows from
Corollary 3.2 that (M,γ) is taut if H1(M,R−;Q(H)) = 0.

An alternative proof of this statement can be given using the sutured Floer ho-
mology SFH(M,γ) which was introduced by Juhász [Ju06]. Indeed, the following
implications hold:

H1(M,R−;Q(H)) = 0
⇔ H1(M,R−;Z[H]) is Z[H]-torsion
⇔ the Alexander polynomial of (M,γ) is non-zero
⇔ the Euler characteristic of SFH(M,γ) is non-zero
⇒ SFH(M,γ) is non-zero
⇔ (M,γ) is taut.

Here the first two equivalences follow from elementary algebraic arguments (see e.g.
[Tu01]), the third equivalence was proved in [FJR11], the fourth statement is elemen-
tary and the last equivalence was proved by Juhász (see [Ju06, Theorem 9.18] and
[Ju08, Theorem 1.4]).

3.2. Proof of Theorem 3.1. We now give a proof of Theorem 3.1. Let (M,γ)
be an irreducible sutured manifold such that R± have no disk components. Let
α : π1(M) → GL(k,F) be a representation. We have to show that

dim H1(M,R−;Fk) + dim H1(M,R+;Fk) ≥ k
(
χ−(R+) + χ−(R−)− 2x(M,γ)

)
.

We start out with the following claim.

Claim. There exists a properly embedded surface S ⊂ M \ (R− ∪R+) with χ−(S) =
x(M,γ) and such that M cut along S is the union of two disjoint (not necessarily
connected) manifolds M± such that R± ⊂ ∂M±.
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Let T be a properly embedded surface in (M,γ) which realizes x(M,γ) and which
is disjoint from R− ∪ R+. We denote by X = {Xi}i∈I the set of components of
M \ T . We now define Z to be the union of the closures of all Xi which intersect R−
non-trivially. We define

S := ∂Z \ ∂M.

Note that for an appropriate orientation of S we have ∂Z = −R−∪F−∪S where F− is
a subsurface of γ. In particular with this orientation we have that [S] is homologous

to [R−] ∈ H2(M,F−;Z). We now write M− = Z and M+ = M \ Z. Note that
∂M+ = −R+ ∪ F+ ∪ S where F+ is a subsurface of γ. Finally note that S is a union
of components of T , hence x(M,γ) ≤ χ−(S) ≤ χ−(T ) = x(M,γ). It is now clear that
S has the desired properties. This concludes the proof of the claim.

We continue with S,M−,M+ as in the claim. We will now use the conventions of
Section 2.3, i.e. we will write

Hα
i (S;Fk[t±1]) = Hα

i (S ⊂ M ;Fk[t±1]) and Hα
i (M±;Fk[t±1]) = Hα

i (M± ⊂ M ;Fk[t±1]).

These groups in particular are well-defined even if S and M± are disconnected. We
will now prove the following claim.

Claim. We have the following equality

k(χ(S)− χ(R−)) = χ(M−, R−;Fk)− χ(M−, S;Fk)

and similarly for the “+” subscript.

We will prove the claim for the “−” subscript, the other case is proved exactly the
same way. It is well-known that for any pair of spaces (X, Y ) we have χ(X, Y ) =
χ(X)− χ(Y ). It thus follows that

χ(M−) = χ(R−) + χ(M−, R−) and χ(M−) = χ(S) + χ(M−, S).

Subtracting these two terms we conclude that

χ(R−)− χ(S) = χ(M−, S)− χ(M−, R−).

The claim now follows from Lemma 2.6.

Claim. We have the following inequality

b1(M,R−;Fk) ≥ b1(M−, R−;Fk)− χ(M+, S;Fk),

and similarly with the roles of “−” and “+” reversed.

We write
K− = Ker(H1(R−;Fk) → H1(M−;Fk)), and
K = Ker(H1(R−;Fk) → H1(M ;Fk)).

Note that H1(R−;Fk) → H1(M ;Fk) factors through H1(R−;Fk) → H1(M−;Fk), it
follows that dim(K) ≥ dim(K−).



10 STEFAN FRIEDL AND TAEHEE KIM

Consider the following commutative diagram of exact sequences (with Fk-coefficients
understood)

0 → K− → H1(R−) → H1(M−) → H1(M−, R−) → H0(R−) → H0(M−) → 0
↓ ↓ ↓ ↓ ↓ ↓

0 → K → H1(R−) → H1(M) → H1(M,R−) → H0(R−) → H0(M) → 0.

Note that by exactness the alternating sum of the dimensions in the two horizontal
sequences are zero. We therefore obtain that

b1(M−, R−;Fk) = dim(K−)− b1(R−;Fk) + b1(M−;Fk) + b0(R−;Fk)− b0(M−;Fk)
b1(M,R−;Fk) = dim(K)− b1(R−;Fk) + b1(M ;Fk) + b0(R−;Fk)− b0(M ;Fk).

Subtracting we see that

b1(M,R−;Fk)− b1(M−, R−;Fk)
=

(
b1(M ;Fk) + dim(K)− b0(M ;Fk)

)
−

(
b1(M−;Fk) + dim(K−)− b0(M−;Fk)

)
≥

(
b1(M ;Fk)− b0(M ;Fk)

)
−

(
b1(M−;Fk)− b0(M−;Fk)

)
.

We now write L = Ker(H2(M,M−;Fk) → H1(M−;Fk)). Consider the following piece
of the long exact sequence of the pair (M,M−), where Fk-coefficients are once again
understood:

0 → L → H2(M,M−) → H1(M−) → H1(M) → H1(M,M−) → H0(M−) → H0(M) → 0.

(Here we used Lemma 2.3 to conclude that H0(M,M−;Fk) = 0.) We now use that
the alternating sum of the dimensions in the above exact sequence is zero to deduce
that (

b1(M ;Fk)− b0(M ;Fk)
)
−
(
b1(M−;Fk)− b0(M−;Fk)

)
= b1(M,M−;Fk)− b2(M,M−;Fk) + dim(L)
≥ b1(M,M−;Fk)− b2(M,M−;Fk)
= b1(M+, S;Fk)− b2(M+, S;Fk)
= −χ(M+, S;Fk).

Here the second to last equality follows from excision and the last equality follows
from Corollary 2.5 applied to (M+, S). This concludes the proof of the claim.

Finally note that by Corollary 2.5 we have the following inequalities

b1(M±, R±;Fk) ≥ b1(M±, R±;Fk)− b2(M±, R±;Fk) = χ(M±, R±;Fk).

Combining these inequalities with the above claims we obtain that

b1(M,R−;Fk) + b1(M,R+;Fk)
≥ b1(M−, R−;Fk)− χ(M+, S;Fk) + b1(M+, R+;Fk)− χ(M−, S;Fk)
≥ χ(M−, R−;Fk)− χ(M+, S;Fk) + χ(M+, R+;Fk)− χ(M−, S;Fk)
= (χ(M−, R−;Fk)− χ(M−, S;Fk)) + (χ(M+, R+;Fk)− χ(M+, S;Fk))
= k(2χ(S)− χ(R+)− χ(R−)).

We can now conclude the proof of Theorem 3.1. Recall that we assumed that M is
irreducible and R± have no disk components. This implies that no component of R±
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is a sphere, and hence χ−(R±) = −χ(R±). Finally note that for any surface T we
have χ−(T ) ≥ −χ(T ). Combining these observations with the above inequality we
see that

b1(M,R−;Fk) + b1(M,R+;Fk) ≥ k(2χ(S)− χ(R+)− χ(R−))
≥ k(χ−(R+) + χ−(R−)− 2χ−(S))
= k(χ−(R+) + χ−(R−)− 2x(M,γ)).

This concludes the proof of Theorem 3.1.

4. Proof of the ‘only if’ direction of Theorem 1.1

In this section we will prove the following theorem, which is a slight strengthening
of the ‘only if’ direction of Theorem 1.1.

Theorem 4.1. Let (M,γ) be a taut sutured manifold with M ̸= S1×D2 and M ̸= D3.
Then there exists a unitary representation α : π1(M) → U(k) such that

H∗(M,R−;Ck) = H∗(M,R+;Ck) = 0.

Remark. We will now argue that we indeed have to exclude the cases M = S1 ×D2

and M = D3.

(1) Suppose that M = S1×D2 and that γ consists of two meridional sutures, i.e.
of the form

γ = [a, b]× ∂D2 ∪ [c, d]× ∂D2

with [a, b] and [c, d] having disjoint images in S1 = [0, 1]/0 ∼ 1 where we
endow the central ‘sutures’ of the annuli with opposite orientations. In that
case R+ is also of the form I × ∂D2. It is straightforward to see that there
exists no representation α : π1(M) = Z → U(k) such that H1(M,R−;Ck) = 0.

(2) An elementary argument furthermore shows that M = D3 with at least two
sutures also does not admit a unitary representation α : π1(M) → U(k) with
H1(M,R−;Ck) = H1(M,R+;Ck) = 0.

4.1. The results of Agol, Liu, Przytycki-Wise and Wise. Before we can state
the results of Agol, Liu, Przytycki-Wise and Wise we first need to introduce a few
more definitions.

(1) A group π is called residually finite rationally solvable or RFRS if there exists
a filtration of groups π = π0 ⊃ π1 ⊃ π2 . . . such that the following hold:
(a) ∩iπi = {1},
(b) πi is a normal, finite index subgroup of π for any i,
(c) for any i the map πi → πi/πi+1 factors through πi → H1(πi;Z)/torsion.
We refer to [Ag08] for details.

(2) Given a sutured manifold (M,γ) the double DM = D(M,γ) is defined to be
the double of M along R = R+∪R−, i.e. DM = M∪R+∪R−M . Note that DM
is a 3-manifold with empty or toroidal boundary. We denote by r : DM → M
the retraction map given by ‘folding’ the two copies of M along R.
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(3) Let N be a 3-manifold with empty or toroidal boundary. An integral class
ϕ ∈ H1(N ;Z) = Hom(π1(N),Z) is called fibered if there exists a fibration
p : N → S1 such that ϕ = p∗ : π1(N) → Z. We say ϕ ∈ H1(N ;Q) is fibered
if a non-trivial integral multiple of ϕ is fibered. We say ϕ ∈ H1(N ;Q) is
quasi-fibered if any open neighborhood of ϕ contains a fibered class.

The statement of the following theorem is explicitly stated in the proof of [Ag08,
Theorem 6.1].

Theorem 4.2. (Agol) Let (M,γ) be a taut sutured manifold with M ̸= S1 × D2.
We write W = D(M,γ) and we denote by ϕ ∈ H1(W ;Z) the Poincaré dual of [R−] ∈
H2(W,∂W ;Z). If π1(M) is RFRS, then there exists an epimorphism α : π1(M) →
G to a finite group, such that in the covering p : W̃ → W corresponding to α ◦
r∗ : π1(W ) → G the class p∗(ϕ) ∈ H1(W̃ ;Z) is quasi-fibered.

We can apply Agol’s theorem in our context due to the following theorem:

Theorem 4.3. (Liu, Przytycki-Wise, Wise) Let M be an irreducible 3-manifold
with non-trivial boundary, then π1(M) is virtually RFRS, i.e. π1(M) admits a finite
index subgroup which is RFRS.

In the hyperbolic case this theorem is due to Wise [Wi12], in the graph manifold
case it is due to Liu [Liu11] and independently to Przytycki-Wise [PW11] and in the
remaining (‘mixed’) case it is due to Przytycki-Wise [PW12]. We refer to the survey
paper [AFW12] for background and more precise references.

4.2. Twisted Alexander polynomials and the Thurston norm. Let N be a
3-manifold with empty or toroidal boundary, let ϕ ∈ H1(N ;Z) be non-trivial and let
α : π1(N) → GL(k,F) be a representation. Then given i ∈ {0, 1, 2} we can consider
the i-th twisted Alexander polynomial ∆α

N,ϕ,i ∈ F[t±1], which is defined as the order

of the twisted Alexander module Hi(N ;Fk[t±1]). Note that ∆α
N,ϕ,i ∈ F[t±1] is well-

defined up to multiplication by a unit in F[t±1]. In this paper we will not give a
definition of twisted Alexander polynomials, but we refer to the foundational papers
[Lin01, Wa94, KL99] and the survey paper [FV10] for details and more information.

Given p(t) ̸= 0 ∈ F[t±1] we can write p(t) =
∑s

i=r ait
i with ar ̸= 0, as ̸= 0 and we

define

deg(p(t)) := s− r.

Note that deg∆α
N,ϕ,i is well-defined. We can now state the following theorem which

is implicit in the proof of [FV12a, Theorem 5.9].

Theorem 4.4. Let W be a 3-manifold with empty or toroidal boundary. Suppose
that W ̸= S1 × S2 and W ̸= S1 × D2. Let ϕ ∈ H1(W ;Z). Suppose there exists a

finite cover f : W̃ → W such that f ∗(ϕ) is quasi-fibered. Then there exists a unitary
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representation α : π1(W ) → U(k) such that ∆α
W,ϕ,i ̸= 0 for i = 0, 1, 2 and such that

k · ∥ϕ∥T =
2∑

i=0

(−1)i+1 deg∆α
W,ϕ,i.

4.3. Proof of Theorem 4.1. We are now in a position to prove Theorem 4.1. Let
(M,γ) be a taut sutured manifold such that M ̸= S1 ×D2 and M ̸= D3.

Since M ̸= D3 and M is irreducible, it follows that R− and R+ do not have
spherical components. It follows in a straightforward way from our assumption that
M ̸= S1×D2, D3 and from Lemma 2.1 that R− and R+ do not have disk components.
We thus see that χ−(R±) = −χ(R±).

We write W = D(M,γ) and we denote by ϕ ∈ H1(W ;Z) the class dual to R−.
Since M is taut it follows from [Ga83, Corollary 5.3] and [Th86, Corollary 2] that R−
is a Thurston norm minimizing representative of ϕ.

By Theorem 4.3 there exists a finite cover p : M ′ → M such that π1(M
′) is RFRS.

Note that this finite cover gives canonically rise to a finite cover (M ′, γ′) → (M,γ)
of sutured manifolds. Also note that (M ′, γ′) is again a taut sutured manifold. (This
follows for example from [Ga83, Corollary 5.3] since pull-backs of taut foliations are
obviously taut.)

We now write W ′ = D(M ′, γ′) and we denote by ϕ′ ∈ H1(W ′;Z) the Poincaré dual
of [R′

−] ∈ H2(W
′, ∂W ′;Z). Note that the finite covering p : M ′ → M gives rise to a

finite covering map W ′ → W which we also denote by p. We furthermore note that
ϕ′ = p∗(ϕ). By Theorem 4.2 there exists an epimorphism α : π1(M

′) → G to a finite

group such that in the covering q : W̃ ′ → W ′ corresponding to α ◦ r∗ : π1(W
′) → G

the class q∗(ϕ′) is quasi-fibered.

Note that p ◦ q : W̃ ′ → W is a finite covering map such that the pull back of ϕ is
quasi-fibered. By Theorem 4.4 there exists a unitary representation α : π1(W ) → U(k)
such that ∆α

W,ϕ,i ̸= 0 for i = 0, 1, 2 and such that

(3) k · ∥ϕ∥T =
2∑

i=0

(−1)i+1 deg∆α
Wϕ,i.

We now write X− := W \ νR− and X+ := W \ νR+. Note that R− admits two
inclusions intoX− which we denote by ιl (‘left embedding’) and ιr (‘right embedding’).
Similarly we denote the two inclusions of R+ into X+ by ιl and ιr.

Claim. The inclusion induced maps

ιl, ιr : Hi(R−;Ck) → Hi(X−;Ck) and
ιl, ιr : Hi(R+;Ck) → Hi(X+;Ck)

are isomorphisms for all i.
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Since ∆α
W,ϕ,1 ̸= 0 it follows from [FK06, Proofs of Propositions 3.5 and 3.6] that

the maps

(4) ιl, ιr : H0(R−;Ck) → H0(X−;Ck) and ιl, ιr : H2(R−;Ck) → H2(X−;Ck)

are isomorphisms. Note thatW has empty or toroidal boundary. A standard Poincaré
duality argument shows that χ(W ) = 0. This implies in turn that χ(R−) = χ(X−).
It now follows from (4) and from Lemma 2.6 that

(5) b1(R−;Ck) = b1(X−;Ck).

It remains to show that an isomorphism is given by the inclusion induced maps.
By [FK06, Proposition 3.2] we have the following long exact sequence in homology:

(6) . . . Hi(R−;Ck)⊗ C[t±1]
ιl−ιrt−−−→ Hi(X−;Ck)⊗ C[t±1] → Hi(W ;Ck[t±1]) → . . .

Since ∆α
W,ϕ,i ̸= 0 for i = 0, 1, 2 it follows that Hi(W ;Ck[t±1]) is C[t±1]–torsion for any

i. On the other hand Hi(R−;Ck) ⊗ C[t±1] is C[t±1]-torsion free, it follows that the
long exact sequence (6) splits into short exact sequences:

0 → Hi(R−;Ck)⊗ C[t±1]
ιl−ιrt−−−→ Hi(X−;Ck)⊗ C[t±1] → Hi(W ;Ck[t±1]) → 0.

By the definition of the order of a module we have

(7) ∆α
W,ϕ,i = det

(
ιl − ιrt : Hi(R−;Ck)⊗ C[t±1] → Hi(X−;Ck)⊗ C[t±1]

)
.

(Here we implicitly use the fact we established above that bi(R−;Ck) = bi(X−;Ck)
for i = 0, 1, 2.) Now recall that if A and B are s× s-matrices over C, then

(8) deg(det(A+ tB)) = s ⇔ det(A) ̸= 0 and det(B) ̸= 0.

Since ιl, ιr : Hi(R−;Ck) → Hi(X−;Ck) are isomorphisms for i = 0 and i = 2 we thus
obtain from (7) that

(9) deg∆α
W,ϕ,i = bi(R−;Ck) for i = 0, 2.

Note that by Lemma 2.6 and by the above we have

2∑
i=0

(−1)i+1bi(R−;Ck) = −kχ(R−) = kχ−(R−) = k · ∥ϕ∥T .

Combining this with (3), (7) and (9) we see that

deg
(
det(ιl − ιrt : H1(R−;Ck)⊗ C[t±1] → H1(X−;Ck)⊗ C[t±1])

)
= b1(R−;Ck).

By (8) we now conclude the maps ιl, ιr : H1(R−;Ck) → H1(X−;Ck) are isomorphisms.
This concludes the proof of the claim.
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Now note that we have the following commutative diagram:

Hi(R−;Ck)
∼= //

''OO
OOO

OOO
OOO

Hi(X−;Ck)

Hi(M ;Ck).

77ooooooooooo

It follows that that the map Hi(R−;Ck) → Hi(M ;Ck) is injective. (The same con-
clusion also holds with “+” subscripts.) Hence in order to show that the maps
Hi(R−;Ck) → Hi(M ;Ck) are isomorphisms it suffices to show the following claim:

Claim. For i = 0, 1, 2 we have

bi(R−;Ck) = bi(M ;Ck).

We first record that by the discussion preceding the claim we have

(10) bi(M ;Ck) ≥ bi(R−;Ck) and bi(M ;Ck) ≥ bi(R+;Ck).

Now note that we can write X+ = M1∪R− M2 where M1,M2 are two copies of M . We
consider the long exact Mayer-Vietoris sequence corresponding to this decomposition:

(11) · · · → Hi(R−;Ck) → Hi(M1;Ck)⊕Hi(M2;Ck) → Hi(X+;Ck) → . . .

By the above inclusion induced maps Hi(R−;Ck) → Hi(M1;Ck) and Hi(R−;Ck) →
Hi(M2;Ck) are injective. We thus see that the long exact sequence (11) splits into
short exact sequences:

0 → Hi(R−;Ck) → Hi(M1;Ck)⊕Hi(M2;Ck) → Hi(X+;Ck) → 0.

This implies that

bi(X+;Ck) = bi(M1;Ck) + bi(M2;Ck)− bi(R−;Ck) for i = 0, 1, 2.

It follows from the equality bi(X+;Ck) = bi(R+;Ck) and from (10) that

(12) bi(M1;Ck) ≥ bi(R+;Ck) = bi(X+;Ck) = bi(M1;Ck)+(bi(M2;Ck)−bi(R−;Ck)).

Note that the second summand is again non-negative by (10). We now see from (12)
that in fact bi(M ;Ck) = bi(M2;Ck) = bi(R−;Ck) as claimed. Similarly we prove that
bi(M1;Ck) = bi(R+;Ck). This concludes the proof of the claim and thus the proof of
Theorem 4.1.
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