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Complexity of surfaces

The complexity of a surface is defined as

χ−(Σ) := −χ(Σ with spherical and disk components removed).

Given a 3-manifold N and φ ∈ H1(N;Z) ∼= H2(N, ∂N;Z) the
Thurston norm of φ is defined as

xN(φ) := minimal complexity of surface representing φ.

Thurston showed that xN can be extended to a seminorm
xN : H1(N;Q)→ Q≥0.
If K ⊂ S3 is a non-trivial knot and φ ∈ H1(S3 \ νK ) ∼= Z a
generator, then

xS3\νK (φ) := 2genus(K )− 1.

For knots we have a lower bound

deg ∆K (t) ≤ 2genus(K ),

which is in general not an equality.But it is an equality for fibered
knots.
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The Thurston norm and the Alexander polynomial

Let N be a 3-manifold. We write F := H1(N;Z)/torsion and we
consider H1(N;Z[H]) := H1(H-cover of N).

and
∆N := order of the Z[H]-module H1(N;Z[H]) ∈ Z[H].

We write
∆N :=

∑
h∈H

chh ∈ Z[H],

and given φ ∈ H1(N;Q) = Hom(H;Q) we define

aN(φ) := max{φ(g)− φ(h) | cg 6= 0 and ch 6= 0}.
McMullen showed that

aN(φ) ≤ xN(φ) for any φ ∈ H1(N;Q),

furthermore equality holds for fibered classes, i.e. for classes such
that there exists a fibration p : N → S1 with

nφ = p∗ : π1(N)→ Z for some n ∈ N.
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Surfaces in 4-manifolds

Given a closed 4-manifold M and ψ ∈ H2(N) ∼= H2(N) we consider

xM(φ) := minimal complexity of surface in M representing φ.
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Surfaces in 4-manifolds of the form S1 × N I

Let’s consider M = S1 × N and

ψ = γ ⊗ 1 + φ ∈ H2(S1 × N) = H1(N)⊗ Z⊕ H2(N).

We represent γ by a curve c ⊂ N and φ by a Thurston norm
minimizing surface Σ ⊂ N. We suppose that |c · Σ| = |c ∩ Σ|,
which is often/mostly the case.Then ψ is represented by

S1 × c ∪ Σ which is an immersed surface.

For each intersection point of c and Σ we remove a disk on S1 × c
and on Σ and we glue in an annulus to obtain an embedded
surface. The new surface has complexity

χ− = χ−(S1× c ∪Σ) + 2|c ∩Σ| = χ−(Σ) + 2|c ·Σ| = xN(φ) + |ψ2|

i.e. xS1×N(ψ) ≤ xN(φ) + |ψ2|.
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Surfaces in 4-manifolds of the form S1 × N II

If M = S1 × N then in many/most cases we have

xS1×N(ψ) ≤ xN(φ) + |ψ2|.

The Seiberg-Witten invariants of S1 × N give the lower bound

xS1×N(ψ) ≥ aN(φ) + |ψ2|.

Theorem. (F-Vidussi) If N is irreducible and not a graph
manifold, then

xS1×N(ψ) ≥ xN(φ) + |ψ2|.

(1) In many/most cases we can thus completely determine xS1×N .
(2) This theorem was also obtained by Kronheimer 1999 using
‘monopole classes’
(3) Our theorem extends to S1-bundles over such 3-manifolds.
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Proof of the theorem I

The following is the ‘great miracle of 3-manifold topology’:

Theorem. (Agol, Przytycki-Wise, Wise - 2012) If N3 is
irreducible and not a graph manifold, then π1(N) is virtually a
subgroup of a RAAG.

One of the key interests in this theorem comes from the following:

Theorem. (Agol - 2007) If N3 is irreducible and π1(N) is
virtually a subgroup of a RAAG, then given any φ ∈ H1(N;Q)
there exists a finite cover p : Ñ → N such that p∗φ ∈ H1(Ñ;Q) is
the limit of fibered classes.

An alternative proof of Agol’s theorem is also given by F-Kitayama.
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Theorem. (Agol - 2007) If N3 is irreducible and π1(N) is
virtually a subgroup of a RAAG, then given any φ ∈ H1(N;Q)
there exists a finite cover p : Ñ → N such that p∗φ ∈ H1(Ñ;Q) is
the limit of fibered classes.

An alternative proof of Agol’s theorem is also given by F-Kitayama.
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Proof of the theorem II

Summarizing we have:

Theorem. (Agol, Przytycki-Wise, Wise) If N3 is irreducible and
not a graph manifold, then given any φ ∈ H1(N;Q) there exists a
finite cover p : Ñ → N such that p∗φ ∈ H1(Ñ;Q) is the limit of
fibered classes.

The theorem in the product case is now a consequence of the
following two observations
(1) It suffices to find lower bounds on x for finite covers.
(2) We know that a = x for fibered classes, by continuity this
extends to classes which are limits of fibered classes.

The case of S1-bundles over 3-manifolds is technically harder(the
Seiberg-Witten invariants of N no longer agree with the Alexander
polynomial of N) but it goes along the same lines.
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Other applications of the ‘grand miracle’

Other applications of Agol, Przytycki-Wise, Wise:

(1) We can determine which S1-bundles over a 3-manifold are
symplectic (F-Vidussi)
(2) Twisted Alexander polynomials detect the knot
genus/Thurston norm. (F-Vidussi)
(3) If π is the fundamental group of a 3-manifold N and the
fundamental group of a quasi-Kähler manifold M, then N is a
graph manifold. (F-Suciu)
(4) We can determine minimal HNN splitting over a free group for
knot groups (F-Silver-Williams)
(5) We get a new new algorithm for showing that a sutured
manifold is taut (F-Taehee Kim)
(6) S1-bundles over an irreducible 3-manifold which is not a graph
manifold is virtually symplectic (F-Baykur)
(7) We can strengthen Stallings’ fibering theorem (F-DeBlois)
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