Complexity of surfaces in 4-manifolds with a free circle action

Stefan Friedl (joint with Stefano Vidussi)

October 2012

Stefan Friedl (joint with Stefano Vidussi) Complexity of surfaces in 4-manifolds with a free circle action

通 とう ほうとう ほうど

The complexity of a surface is defined as

 $\chi_{-}(\Sigma) := -\chi(\Sigma \text{ with spherical and disk components removed}).$

(本部)) (本語)) (本語)) (語)

The complexity of a surface is defined as

 $\chi_{-}(\Sigma) := -\chi(\Sigma \text{ with spherical and disk components removed}).$

Given a 3-manifold N and $\phi \in H^1(N; \mathbb{Z}) \cong H_2(N, \partial N; \mathbb{Z})$ the *Thurston norm of* ϕ is defined as

 $x_N(\phi) :=$ minimal complexity of surface representing ϕ .

(4月) (1日) (日) 日

The complexity of a surface is defined as

 $\chi_{-}(\Sigma) := -\chi(\Sigma \text{ with spherical and disk components removed}).$

Given a 3-manifold N and $\phi \in H^1(N; \mathbb{Z}) \cong H_2(N, \partial N; \mathbb{Z})$ the *Thurston norm of* ϕ is defined as

 $x_N(\phi) :=$ minimal complexity of surface representing ϕ .

Thurston showed that x_N can be extended to a seminorm $x_N : H^1(N; \mathbb{Q}) \to \mathbb{Q}_{\geq 0}$.

(本部) (本語) (本語) (語)

The complexity of a surface is defined as

 $\chi_{-}(\Sigma) := -\chi(\Sigma \text{ with spherical and disk components removed}).$

Given a 3-manifold N and $\phi \in H^1(N; \mathbb{Z}) \cong H_2(N, \partial N; \mathbb{Z})$ the *Thurston norm of* ϕ is defined as

 $x_N(\phi) :=$ minimal complexity of surface representing ϕ .

Thurston showed that x_N can be extended to a seminorm $x_N : H^1(N; \mathbb{Q}) \to \mathbb{Q}_{\geq 0}$. If $K \subset S^3$ is a non-trivial knot and $\phi \in H^1(S^3 \setminus \nu K) \cong \mathbb{Z}$ a generator, then $x_{S^3 \setminus \nu K}(\phi) := 2 \operatorname{genus}(K) - 1.$

The complexity of a surface is defined as

 $\chi_{-}(\Sigma) := -\chi(\Sigma \text{ with spherical and disk components removed}).$

Given a 3-manifold N and $\phi \in H^1(N; \mathbb{Z}) \cong H_2(N, \partial N; \mathbb{Z})$ the *Thurston norm of* ϕ is defined as

 $x_N(\phi) :=$ minimal complexity of surface representing ϕ .

Thurston showed that x_N can be extended to a seminorm $x_N : H^1(N; \mathbb{Q}) \to \mathbb{Q}_{\geq 0}$. If $K \subset S^3$ is a non-trivial knot and $\phi \in H^1(S^3 \setminus \nu K) \cong \mathbb{Z}$ a generator, then $x_{S^3 \setminus \nu K}(\phi) := 2 \text{genus}(K) - 1.$

For knots we have a lower bound

$$\deg \Delta_{\mathcal{K}}(t) \leq 2 \operatorname{genus}(\mathcal{K}),$$

which is in general not an equality.

< 由 > (同 > (目 > (日 >)) 日 = (日 >) (I =) (I =

The complexity of a surface is defined as

 $\chi_{-}(\Sigma) := -\chi(\Sigma \text{ with spherical and disk components removed}).$

Given a 3-manifold N and $\phi \in H^1(N; \mathbb{Z}) \cong H_2(N, \partial N; \mathbb{Z})$ the *Thurston norm of* ϕ is defined as

 $x_N(\phi) :=$ minimal complexity of surface representing ϕ .

Thurston showed that x_N can be extended to a seminorm $x_N : H^1(N; \mathbb{Q}) \to \mathbb{Q}_{\geq 0}$. If $K \subset S^3$ is a non-trivial knot and $\phi \in H^1(S^3 \setminus \nu K) \cong \mathbb{Z}$ a generator, then $x_{S^3 \setminus \nu K}(\phi) := 2 \text{genus}(K) - 1.$

For knots we have a lower bound

$$\deg \Delta_{\mathcal{K}}(t) \leq 2 \operatorname{genus}(\mathcal{K}),$$

Let N be a 3-manifold. We write $F := H_1(N; \mathbb{Z})/\text{torsion}$ and we consider $H_1(N; \mathbb{Z}[H]) := H_1(H\text{-cover of } N).$

(日本) (日本) (日本)

Let *N* be a 3-manifold. We write $F := H_1(N; \mathbb{Z})/\text{torsion}$ and we consider $H_1(N; \mathbb{Z}[H]) := H_1(H\text{-cover of } N).$

and

 $\Delta_N := \text{order of the } \mathbb{Z}[H] \text{-module } H_1(N; \mathbb{Z}[H]) \in \mathbb{Z}[H].$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let N be a 3-manifold. We write $F := H_1(N; \mathbb{Z})/\text{torsion}$ and we consider $H_1(N; \mathbb{Z}[H]) := H_1(H\text{-cover of } N).$

and

 $\Delta_N := \text{order of the } \mathbb{Z}[H] \text{-module } H_1(N; \mathbb{Z}[H]) \in \mathbb{Z}[H].$

We write

$$\Delta_N:=\sum_{h\in H}c_hh\in\mathbb{Z}[H],$$

and given $\phi \in H^1(N; \mathbb{Q}) = \operatorname{Hom}(H; \mathbb{Q})$ we define

$$a_N(\phi) := \max\{\phi(g) - \phi(h) \,|\, c_g \neq 0 \text{ and } c_h \neq 0\}.$$

マボン イラン イラン 一日

Let N be a 3-manifold. We write $F := H_1(N; \mathbb{Z})/\text{torsion}$ and we consider $H_1(N; \mathbb{Z}[H]) := H_1(H\text{-cover of } N).$

and

 $\Delta_N := \text{order of the } \mathbb{Z}[H] \text{-module } H_1(N; \mathbb{Z}[H]) \in \mathbb{Z}[H].$

We write

$$\Delta_N:=\sum_{h\in H}c_hh\in\mathbb{Z}[H],$$

and given $\phi \in H^1(N; \mathbb{Q}) = \operatorname{Hom}(H; \mathbb{Q})$ we define

$$a_N(\phi) := \max\{\phi(g) - \phi(h) \mid c_g \neq 0 \text{ and } c_h \neq 0\}.$$

McMullen showed that

$$a_{\mathsf{N}}(\phi) \leq x_{\mathsf{N}}(\phi)$$
 for any $\phi \in H^1(\mathsf{N};\mathbb{Q}),$

・吊り イヨト イヨト ニヨ

furthermore equality holds for fibered classes,

Let N be a 3-manifold. We write $F := H_1(N; \mathbb{Z})/\text{torsion}$ and we consider $H_1(N; \mathbb{Z}[H]) := H_1(H\text{-cover of } N).$

and

 $\Delta_N := \text{order of the } \mathbb{Z}[H] \text{-module } H_1(N; \mathbb{Z}[H]) \in \mathbb{Z}[H].$

We write

$$\Delta_N:=\sum_{h\in H}c_hh\in\mathbb{Z}[H],$$

and given $\phi \in H^1(N; \mathbb{Q}) = \operatorname{Hom}(H; \mathbb{Q})$ we define

$$a_N(\phi) := \max\{\phi(g) - \phi(h) \mid c_g \neq 0 \text{ and } c_h \neq 0\}.$$

McMullen showed that

$$a_{\mathcal{N}}(\phi) \leq x_{\mathcal{N}}(\phi)$$
 for any $\phi \in H^1(\mathcal{N};\mathbb{Q}),$

furthermore equality holds for fibered classes, i.e. for classes such that there exists a fibration $p:N\to S^1$ with

$$n\phi = p_* : \pi_1(N) \to \mathbb{Z}$$
 for some $n \in \mathbb{N}$.

Surfaces in 4-manifolds

Given a closed 4-manifold M and $\psi \in H^2(N) \cong H_2(N)$ we consider

 $x_M(\phi) :=$ minimal complexity of surface in M representing ϕ .

(4月) (3日) (3日) 日

Let's consider $M = S^1 \times N$ and

$$\psi = \gamma \otimes 1 + \phi \in H_2(S^1 \times N) = H_1(N) \otimes \mathbb{Z} \oplus H_2(N).$$

<ロ> (四) (四) (注) (注) (三)

Let's consider $M = S^1 \times N$ and $\psi = \gamma \otimes 1 + \phi \in H_2(S^1 \times N) = H_1(N) \otimes \mathbb{Z} \oplus H_2(N).$ We represent γ by a curve $c \subset N$ and ϕ by a Thurston norm minimizing surface $\Sigma \subset N$.

(周) (王) (王)

Let's consider $M = S^1 \times N$ and

$$\psi = \gamma \otimes 1 + \phi \in H_2(S^1 \times N) = H_1(N) \otimes \mathbb{Z} \oplus H_2(N).$$

We represent γ by a curve $c \subset N$ and ϕ by a Thurston norm minimizing surface $\Sigma \subset N$. We suppose that $|c \cdot \Sigma| = |c \cap \Sigma|$, which is often/mostly the case.

伺 と く き と く き と

Let's consider $M = S^1 \times N$ and

$$\psi = \gamma \otimes 1 + \phi \in H_2(S^1 \times N) = H_1(N) \otimes \mathbb{Z} \oplus H_2(N).$$

We represent γ by a curve $c \subset N$ and ϕ by a Thurston norm minimizing surface $\Sigma \subset N$. We suppose that $|c \cdot \Sigma| = |c \cap \Sigma|$, which is often/mostly the case. Then ψ is represented by

 $S^1 imes c \cup \Sigma$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Let's consider $M = S^1 \times N$ and

$$\psi = \gamma \otimes 1 + \phi \in H_2(S^1 \times N) = H_1(N) \otimes \mathbb{Z} \oplus H_2(N).$$

We represent γ by a curve $c \subset N$ and ϕ by a Thurston norm minimizing surface $\Sigma \subset N$. We suppose that $|c \cdot \Sigma| = |c \cap \Sigma|$, which is often/mostly the case. Then ψ is represented by

$$S^1 \times c \cup \Sigma$$
 which is an immersed surface.

伺 とう ヨン うちょう

Let's consider $M = S^1 \times N$ and

$$\psi = \gamma \otimes 1 + \phi \in H_2(S^1 \times N) = H_1(N) \otimes \mathbb{Z} \oplus H_2(N).$$

We represent γ by a curve $c \subset N$ and ϕ by a Thurston norm minimizing surface $\Sigma \subset N$. We suppose that $|c \cdot \Sigma| = |c \cap \Sigma|$, which is often/mostly the case. Then ψ is represented by

 $S^1 \times c \cup \Sigma$ which is an immersed surface.

For each intersection point of c and Σ we remove a disk on $S^1 \times c$ and on Σ and we glue in an annulus to obtain an *embedded* surface.

(同) (王) (王)

Let's consider $M = S^1 \times N$ and

$$\psi = \gamma \otimes 1 + \phi \in H_2(S^1 \times N) = H_1(N) \otimes \mathbb{Z} \oplus H_2(N).$$

We represent γ by a curve $c \subset N$ and ϕ by a Thurston norm minimizing surface $\Sigma \subset N$. We suppose that $|c \cdot \Sigma| = |c \cap \Sigma|$, which is often/mostly the case. Then ψ is represented by

 $S^1 \times c \cup \Sigma$ which is an immersed surface.

For each intersection point of c and Σ we remove a disk on $S^1 \times c$ and on Σ and we glue in an annulus to obtain an *embedded* surface. The new surface has complexity

 $\chi_{-} = \chi_{-}(S^1 \times c \cup \Sigma) + 2|c \cap \Sigma| =$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let's consider $M = S^1 \times N$ and

$$\psi = \gamma \otimes 1 + \phi \in H_2(S^1 \times N) = H_1(N) \otimes \mathbb{Z} \oplus H_2(N).$$

We represent γ by a curve $c \subset N$ and ϕ by a Thurston norm minimizing surface $\Sigma \subset N$. We suppose that $|c \cdot \Sigma| = |c \cap \Sigma|$, which is often/mostly the case. Then ψ is represented by

 $S^1 \times c \cup \Sigma$ which is an immersed surface.

For each intersection point of c and Σ we remove a disk on $S^1 \times c$ and on Σ and we glue in an annulus to obtain an *embedded* surface. The new surface has complexity

$$\chi_{-} = \chi_{-}(S^1 \times c \cup \Sigma) + 2|c \cap \Sigma| = \chi_{-}(\Sigma) + 2|c \cdot \Sigma|$$

・回り くまり くまり しき

Let's consider $M = S^1 \times N$ and

$$\psi = \gamma \otimes 1 + \phi \in H_2(S^1 \times N) = H_1(N) \otimes \mathbb{Z} \oplus H_2(N).$$

We represent γ by a curve $c \subset N$ and ϕ by a Thurston norm minimizing surface $\Sigma \subset N$. We suppose that $|c \cdot \Sigma| = |c \cap \Sigma|$, which is often/mostly the case. Then ψ is represented by

 $S^1 \times c \cup \Sigma$ which is an immersed surface.

For each intersection point of c and Σ we remove a disk on $S^1 \times c$ and on Σ and we glue in an annulus to obtain an *embedded* surface. The new surface has complexity

$$\chi_{-} = \chi_{-}(S^1 \times c \cup \Sigma) + 2|c \cap \Sigma| = \chi_{-}(\Sigma) + 2|c \cdot \Sigma| = x_N(\phi) + |\psi^2|$$

i.e.

(同) (王) (王)

Let's consider $M = S^1 \times N$ and

$$\psi = \gamma \otimes 1 + \phi \in H_2(S^1 \times N) = H_1(N) \otimes \mathbb{Z} \oplus H_2(N).$$

We represent γ by a curve $c \subset N$ and ϕ by a Thurston norm minimizing surface $\Sigma \subset N$. We suppose that $|c \cdot \Sigma| = |c \cap \Sigma|$, which is often/mostly the case. Then ψ is represented by

 $S^1 \times c \cup \Sigma$ which is an immersed surface.

For each intersection point of c and Σ we remove a disk on $S^1 \times c$ and on Σ and we glue in an annulus to obtain an *embedded* surface. The new surface has complexity

$$\chi_{-} = \chi_{-}(S^1 \times c \cup \Sigma) + 2|c \cap \Sigma| = \chi_{-}(\Sigma) + 2|c \cdot \Sigma| = x_N(\phi) + |\psi^2|$$

i.e.
$$x_{S^1 \times N}(\psi) \leq x_N(\phi) + |\psi^2|.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

If $M = S^1 \times N$ then in many/most cases we have

$$x_{S^1 \times N}(\psi) \le x_N(\phi) + |\psi^2|.$$

▲□→ ▲ □→ ▲ □→

If $M = S^1 \times N$ then in many/most cases we have

$$x_{S^1 \times N}(\psi) \le x_N(\phi) + |\psi^2|.$$

The Seiberg-Witten invariants of $S^1 \times N$ give the lower bound

$$x_{S^1 \times N}(\psi) \ge a_N(\phi) + |\psi^2|.$$

同下 イヨト イヨト

If $M = S^1 \times N$ then in many/most cases we have

 $x_{S^1 \times N}(\psi) \le x_N(\phi) + |\psi^2|.$

The Seiberg-Witten invariants of $S^1 \times N$ give the lower bound

$$x_{S^1 \times N}(\psi) \ge a_N(\phi) + |\psi^2|.$$

Theorem. (F-Vidussi) If N is irreducible and not a graph manifold, then

$$x_{S^1 \times N}(\psi) \ge x_N(\phi) + |\psi^2|.$$

同下 イヨト イヨト

If $M = S^1 \times N$ then in many/most cases we have

 $x_{S^1 \times N}(\psi) \le x_N(\phi) + |\psi^2|.$

The Seiberg-Witten invariants of $S^1 \times N$ give the lower bound

$$x_{S^1 \times N}(\psi) \ge a_N(\phi) + |\psi^2|.$$

Theorem. (F-Vidussi) If *N* is irreducible and not a graph manifold, then

$$x_{S^1 \times N}(\psi) \ge x_N(\phi) + |\psi^2|.$$

(1) In many/most cases we can thus completely determine $x_{S^1 \times N}$.

(日本)(日本)(日本)

If $M = S^1 \times N$ then in many/most cases we have

 $x_{S^1 \times N}(\psi) \le x_N(\phi) + |\psi^2|.$

The Seiberg-Witten invariants of $S^1 imes N$ give the lower bound

$$x_{S^1 \times N}(\psi) \ge a_N(\phi) + |\psi^2|.$$

Theorem. (F-Vidussi) If *N* is irreducible and not a graph manifold, then

$$x_{S^1 \times N}(\psi) \ge x_N(\phi) + |\psi^2|.$$

(1) In many/most cases we can thus completely determine x_{S¹×N}.
(2) This theorem was also obtained by Kronheimer 1999 using 'monopole classes'

(日本) (日本) (日本)

If $M = S^1 \times N$ then in many/most cases we have

 $x_{S^1 \times N}(\psi) \le x_N(\phi) + |\psi^2|.$

The Seiberg-Witten invariants of $S^1 imes N$ give the lower bound

$$x_{S^1 \times N}(\psi) \ge a_N(\phi) + |\psi^2|.$$

Theorem. (F-Vidussi) If N is irreducible and not a graph manifold, then

$$x_{S^1 \times N}(\psi) \ge x_N(\phi) + |\psi^2|.$$

(1) In many/most cases we can thus completely determine x_{S¹×N}.
(2) This theorem was also obtained by Kronheimer 1999 using 'monopole classes'

(3) Our theorem extends to S^1 -bundles over such 3-manifolds.

The following is the 'great miracle of 3-manifold topology':

Theorem. (Agol, Przytycki-Wise, Wise - 2012) If N^3 is irreducible and not a graph manifold, then $\pi_1(N)$ is virtually a subgroup of a RAAG.

・ 同 ト ・ ヨ ト ・ ヨ ト

The following is the 'great miracle of 3-manifold topology':

Theorem. (Agol, Przytycki-Wise, Wise - 2012) If N^3 is irreducible and not a graph manifold, then $\pi_1(N)$ is virtually a subgroup of a RAAG.

One of the key interests in this theorem comes from the following:

Theorem. (Agol - **2007)** If N^3 is irreducible and $\pi_1(N)$ is virtually a subgroup of a RAAG, then given any $\phi \in H^1(N; \mathbb{Q})$ there exists a finite cover $p : \tilde{N} \to N$ such that $p^*\phi \in H^1(\tilde{N}; \mathbb{Q})$ is the limit of fibered classes.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The following is the 'great miracle of 3-manifold topology':

Theorem. (Agol, Przytycki-Wise, Wise - 2012) If N^3 is irreducible and not a graph manifold, then $\pi_1(N)$ is virtually a subgroup of a RAAG.

One of the key interests in this theorem comes from the following:

Theorem. (Agol - **2007)** If N^3 is irreducible and $\pi_1(N)$ is virtually a subgroup of a RAAG, then given any $\phi \in H^1(N; \mathbb{Q})$ there exists a finite cover $p : \tilde{N} \to N$ such that $p^*\phi \in H^1(\tilde{N}; \mathbb{Q})$ is the limit of fibered classes.

An alternative proof of Agol's theorem is also given by F-Kitayama.

(日本) (日本) (日本)

Theorem. (Agol, Przytycki-Wise, Wise) If N^3 is irreducible and not a graph manifold, then given any $\phi \in H^1(N; \mathbb{Q})$ there exists a finite cover $p : \tilde{N} \to N$ such that $p^*\phi \in H^1(\tilde{N}; \mathbb{Q})$ is the limit of fibered classes.

伺 とう ヨン うちょう

Theorem. (Agol, Przytycki-Wise, Wise) If N^3 is irreducible and not a graph manifold, then given any $\phi \in H^1(N; \mathbb{Q})$ there exists a finite cover $p : \tilde{N} \to N$ such that $p^*\phi \in H^1(\tilde{N}; \mathbb{Q})$ is the limit of fibered classes.

The theorem in the product case is now a consequence of the following two observations

(1) It suffices to find lower bounds on x for finite covers.

伺 と く き と く き と

Theorem. (Agol, Przytycki-Wise, Wise) If N^3 is irreducible and not a graph manifold, then given any $\phi \in H^1(N; \mathbb{Q})$ there exists a finite cover $p : \tilde{N} \to N$ such that $p^*\phi \in H^1(\tilde{N}; \mathbb{Q})$ is the limit of fibered classes.

The theorem in the product case is now a consequence of the following two observations

- (1) It suffices to find lower bounds on x for finite covers.
- (2) We know that a = x for fibered classes,

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem. (Agol, Przytycki-Wise, Wise) If N^3 is irreducible and not a graph manifold, then given any $\phi \in H^1(N; \mathbb{Q})$ there exists a finite cover $p : \tilde{N} \to N$ such that $p^*\phi \in H^1(\tilde{N}; \mathbb{Q})$ is the limit of fibered classes.

The theorem in the product case is now a consequence of the following two observations

(1) It suffices to find lower bounds on x for finite covers.

(2) We know that a = x for fibered classes, by continuity this extends to classes which are limits of fibered classes.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem. (Agol, Przytycki-Wise, Wise) If N^3 is irreducible and not a graph manifold, then given any $\phi \in H^1(N; \mathbb{Q})$ there exists a finite cover $p : \tilde{N} \to N$ such that $p^*\phi \in H^1(\tilde{N}; \mathbb{Q})$ is the limit of fibered classes.

The theorem in the product case is now a consequence of the following two observations

(1) It suffices to find lower bounds on x for finite covers.

(2) We know that a = x for fibered classes, by continuity this extends to classes which are limits of fibered classes.

The case of S^1 -bundles over 3-manifolds is technically harder

(四) (日) (日)

Theorem. (Agol, Przytycki-Wise, Wise) If N^3 is irreducible and not a graph manifold, then given any $\phi \in H^1(N; \mathbb{Q})$ there exists a finite cover $p : \tilde{N} \to N$ such that $p^*\phi \in H^1(\tilde{N}; \mathbb{Q})$ is the limit of fibered classes.

The theorem in the product case is now a consequence of the following two observations

(1) It suffices to find lower bounds on x for finite covers. (2) We know that a = x for fibered classes, by continuity this extends to classes which are limits of fibered classes.

The case of S^1 -bundles over 3-manifolds is technically harder(the Seiberg-Witten invariants of N no longer agree with the Alexander polynomial of N)

(ロ) (同) (E) (E) (E)

Theorem. (Agol, Przytycki-Wise, Wise) If N^3 is irreducible and not a graph manifold, then given any $\phi \in H^1(N; \mathbb{Q})$ there exists a finite cover $p : \tilde{N} \to N$ such that $p^*\phi \in H^1(\tilde{N}; \mathbb{Q})$ is the limit of fibered classes.

The theorem in the product case is now a consequence of the following two observations

(1) It suffices to find lower bounds on x for finite covers. (2) We know that a = x for fibered classes, by continuity this extends to classes which are limits of fibered classes.

The case of S^1 -bundles over 3-manifolds is technically harder(the Seiberg-Witten invariants of N no longer agree with the Alexander polynomial of N) but it goes along the same lines.

Other applications of Agol, Przytycki-Wise, Wise:

Other applications of Agol, Przytycki-Wise, Wise: (1) We can determine which S^1 -bundles over a 3-manifold are symplectic (F-Vidussi)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Other applications of Agol, Przytycki-Wise, Wise:
(1) We can determine which S¹-bundles over a 3-manifold are symplectic (F-Vidussi)
(2) Twisted Alexander polynomials detect the knot genus/Thurston norm. (F-Vidussi)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Other applications of Agol, Przytycki-Wise, Wise: (1) We can determine which S^1 -bundles over a 3-manifold are symplectic (F-Vidussi) (2) Twisted Alexander polynomials detect the knot genus/Thurston norm. (F-Vidussi) (3) If π is the fundamental group of a 3-manifold N and the fundamental group of a quasi-Kähler manifold M, then N is a graph manifold. (F-Suciu)

Other applications of Agol, Przytycki-Wise, Wise:

(1) We can determine which S^1 -bundles over a 3-manifold are symplectic (F-Vidussi)

(2) Twisted Alexander polynomials detect the knot genus/Thurston norm. (F-Vidussi)

(3) If π is the fundamental group of a 3-manifold N and the fundamental group of a quasi-Kähler manifold M, then N is a graph manifold. (F-Suciu)

(4) We can determine minimal HNN splitting over a free group for knot groups (F-Silver-Williams)

Other applications of Agol, Przytycki-Wise, Wise:

(1) We can determine which S^1 -bundles over a 3-manifold are symplectic (F-Vidussi)

(2) Twisted Alexander polynomials detect the knot genus/Thurston norm. (F-Vidussi)

(3) If π is the fundamental group of a 3-manifold N and the fundamental group of a quasi-Kähler manifold M, then N is a graph manifold. (F-Suciu)

(4) We can determine minimal HNN splitting over a free group for knot groups (F-Silver-Williams)

(5) We get a new new algorithm for showing that a sutured manifold is taut (F-Taehee Kim)

Other applications of Agol, Przytycki-Wise, Wise:

(1) We can determine which S^1 -bundles over a 3-manifold are symplectic (F-Vidussi)

(2) Twisted Alexander polynomials detect the knot genus/Thurston norm. (F-Vidussi)

(3) If π is the fundamental group of a 3-manifold N and the fundamental group of a quasi-Kähler manifold M, then N is a graph manifold. (F-Suciu)

(4) We can determine minimal HNN splitting over a free group for knot groups (F-Silver-Williams)

(5) We get a new new algorithm for showing that a sutured manifold is taut (F-Taehee Kim)

(6) S^1 -bundles over an irreducible 3-manifold which is not a graph manifold is virtually symplectic (F-Baykur)

(ロ) (同) (E) (E) (E)

Other applications of Agol, Przytycki-Wise, Wise:

(1) We can determine which S^1 -bundles over a 3-manifold are symplectic (F-Vidussi)

(2) Twisted Alexander polynomials detect the knot genus/Thurston norm. (F-Vidussi)

(3) If π is the fundamental group of a 3-manifold N and the fundamental group of a quasi-Kähler manifold M, then N is a graph manifold. (F-Suciu)

(4) We can determine minimal HNN splitting over a free group for knot groups (F-Silver-Williams)

(5) We get a new new algorithm for showing that a sutured manifold is taut (F-Taehee Kim)

(6) S^1 -bundles over an irreducible 3-manifold which is not a graph manifold is virtually symplectic (F-Baykur)

(7) We can strengthen Stallings' fibering theorem (F-DeBlois)

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()