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Abstract. Let M be a 4-manifold with residually finite fundamental group G
having b1(G) > 0. Assume that M carries a symplectic structure with trivial
canonical class K = 0 ∈ H2(M). Using a theorem of Bauer and Li, together
with some classical results in 4–manifold topology, we show that for a large class
of groups M is determined up to homotopy and, in favorable circumstances, up to
homeomorphism by its fundamental group. This is analogous to what was proven by
Morgan–Szabó in the case of b1 = 0 and provides further evidence to the conjectural
classification of symplectic 4–manifolds with K = 0. As a side, we obtain a result
that has some independent interest, namely the fact that the fundamental group of
a surface bundle over a surface is large, except for the obvious cases.

1.1. Introduction. A classification, even conjectural, of symplectic manifolds of
(real) dimension 4 can be considered at the moment out of reach. In this realm
we must currently content ourselves with tackling this problem for some limited class
of manifolds where the problem becomes more tractable. An example of that, that
mimics the approach common in complex geometry, is to study manifolds of a given
Kodaira dimension (see [Li06a]). This approach has allowed a complete classification,
up to diffeomorphism, in the case of Kodaira dimension κ = −∞. The next step is to
tackle the case of κ = 0 where some encouraging results, described in part below, are
already available. For sake of presentation, here we will be concerned with the case
of trivial canonical class K = 0, the difference being almost immaterial, see [Li06a,
Theorem 2.4 and Proposition 6.3].

Examples of symplectic manifolds withK = 0 are familiar, but quite exceptional: in
particular, the only known example with trivial fundamental group is the K3 surface.
Motivated by this fact, Morgan and Szabó proved in [MS97] that a simply connected
symplectic 4–manifold with K = 0 is homotopy equivalent (hence homeomorphic, by
Freedman’s work) to the K3 surface. In fact, as remarked in [Bau08, Corollary 1.4],
their result extends to all manifolds with b1 = 0 as long as the fundamental group
has nontrivial finite quotients. From the vantage point of this note, it is convenient
to rephrase the main result of [MS97] in terms of fundamental groups. We begin by
introducing the following notation.

Definition. A closed 4–manifold M is a Symplectic Calabi–Yau (SCY for short) man-
ifold if it admits a symplectic structure with K = 0 ∈ H2(M ;Z). A finitely presented
group is an SCY group if it is the fundamental group of an SCY 4–manifold.

S. Vidussi was partially supported by NSF grant #0906281.
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(Henceforth all groups will be implicitly assumed to be finitely presented.) We will
state a weaker version of the main result of [MS97], restricting ourselves to residually
finite groups, more manageable for our purposes.

Theorem 1.1. (Morgan–Szabó) Let G be a residually finite SCY group with b1(G) =
0. Then the following holds true:

(1) G is the trivial group;
(2) the corresponding SCY manifolds are homotopy equivalent, hence unique up

to homeomorphism.

At this point we can ask if results similar to those of Theorem 1.1 hold for groups
with b1(G) > 0. The geography of known SCY manifolds with positive first Betti
number, as we discuss in Section 2.1, is fairly limited and is composed exclusively
by infrasolvmanifolds, all (finitely covered by) torus bundles over a torus. Donaldson
[Do08] and Li [Li06a] have suggested the possibility that this list is complete. This
suggestion is supported by work of Bauer and Li in [Bau08, Li06b]:

Theorem 1.2. (Bauer, Li) Let G be a SCY group with b1(G) > 0. Then the
following holds true:

(1) 2 ≤ b1(G) ≤ 4;
(2) the corresponding SCY manifolds satisfy χ(M) = σ(M) = 0.

If M is a SCY manifold all its finite covers are. The theorem above entails therefore
that 2 ≤ b1(G) ≤ vb1(G) ≤ 4, where vb1(G) = sup{b1(Gi)|Gi ≤f.i. G}.

The purpose of this note is to discuss how to bridge the gap between the state-
ment of Theorem 1.2 and that of Theorem 1.1, i.e. to attempt to give a topological
classification for b1 > 0 that mimics parts (1) and (2) of Theorem 1.1.

Regarding part (1), our work will be mostly devoted to apply Theorem 1.2 to
compute certain group–theoretic invariants for SCY groups, to show that they are
consistent with those of infrasolvmanifolds groups. The one merit is to show that
Theorem 1.2 constrains quite effectively SCY groups at least within some interesting
classes of groups. In particular we will show, as consequence of the recent work of
Agol and Wise [Ag12, Wi12], the following alternative, that is possibly of independent
interest:

Theorem 1.3. Let G be the fundamental group of a surface bundle over a surface
Σh ↪→ M → Σg; then G is either large or max (g, h) ≤ 1.

(Recall that a group G is large if a finite index subgroup surjects onto a nonabelian
free group. In such case, vb1(G) = ∞.1)

While it appears very unlikely that the constraints of Theorem 1.2 characterize
SCY groups, we will show that for the 3–dimensional analog (namely determining,

1While preparing the final version of this paper we learned that, independently, R. İ. Baykur (see
[Ba12]) and T. J. Li–Y. Ni (see [LNi12]) obtained, under the same assumptions, similar conclusions
on the virtual Betti number.
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among all 3–manifolds, the class of those manifolds N that fiber over S1 with a
fibration with Euler class e = 0 ∈ H2(N ;Z)) the condition 1 ≤ b1(G) ≤ vb1(G) ≤ 3
is “almost” sufficient to characterize the class. (The “almost” is due to the presence
of S1 × S2.) This is a rather straightforward consequence of highly nontrivial facts
on 3–manifold groups (culminating in [Ag12, Wi12]).

Our strongest results are about part (2) and show, for a large class of SCY groups,
the uniqueness of the homotopy type for the corresponding manifold:

Theorem 1.4. Let G be a residually finite SCY group with b1(G) > 0. Assume
H2(G;Z[G]) = 0. Then the corresponding SCY manifolds are homotopy equivalent
Eilenberg–Maclane spaces K(G, 1).

In the framework of residually finite fundamental groups, Theorem 1.4 reduces the
study up to homotopy of SCY 4–manifolds with b1 > 0 to determining SCY groups,
under the assumption that H2(G;Z[G]) = 0. This assumption holds for large classes
of groups, in particular all virtual duality groups of virtual cohomological dimension
at least 3 (see [Br94, Proposition VIII.11.3]). Remarkably for us, this is the case
for the fundamental groups of all known examples of SCY manifolds, as they are
Poincaré duality groups of dimension 4. These groups are virtually poly–Z hence
residually finite. Also, as for virtually poly–Z groups the Borel conjecture holds true
(see [FJ90]) in dimension 4, we thus have the following:

Corollary 1.5. Let G be a SCY group arising as fundamental group of an infrasolv-
manifold. Then the corresponding SCY manifolds are unique up to homeomorphism.

Combined with Theorem 1.1 the corollary asserts that, for all known examples, the
fundamental group determines in fact the homeomorphism type of SCY 4–manifolds.

We want to stress that the results presented above sit at the intersection of sym-
plectic topology and 4–manifold topology. Namely, they provide constraints on the
type of M that emerge only in this dimension; it is otherwise known by [FP11] that
in dimension 6 for any finitely presented group G, there exists a symplectic manifold
Z with canonical class K = 0 and π1(Z) = G and much latitude on the choice of
higher Betti numbers. (In dimension 2, of course, the only admissible G is Z2.)

We end with a comment regarding the classification up to diffeomorphism. It is
often expected that in dimension 4 every homeomorphism class of smooth manifolds
admits multiple, or even infinite, smoothings. This expectation, however, is founded
mostly on our understanding of simply–connected 4–manifolds. Eilenberg–Maclane
spaces may well exhibit a different behavior. Recently, Stern asked in [St12] whether
(symplectic) 4–dimensional Eilenberg–Maclane spaces have at most one smooth struc-
ture. The same result of uniqueness up to diffeomorphism for all examples covered
by Corollary 1.5 would follow, as discussed at the end of Section 3, from a conjec-
ture of Baldridge and Kirk [BK07, Conjecture 23], that is motivated by a different
circle of ideas. It is not out of question therefore to expect that Corollary 1.5 holds
in the smooth category as well. Similarly, all known constructions of exotic simply
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connected 4–manifolds fail to produce a symplectic manifold with K = 0 nondiffeo-
morphic to the K3 surface. We can add, for the case of SCY manifolds, a further
ingredient: potentially nondiffeomorphic symplectic smoothings with K = 0 would
have to have, even for all finite covers, the same Seiberg–Witten invariants. In fact,
Taubes’ constraints imply that K = 0 is the only basic class, and the same situation
occurs for all finite covers. This implies in particular that different smoothings would
not be distinguishable with any of the known smooth invariants.

Acknowledgement. We would like to thank Dieter Kotschick for some useful remarks
on the value of the Hausmann–Weinberger and Kotschick invariants of the fundamen-
tal group of a surface bundle over a surface. We are also grateful to the referee for
carefully reading this paper.

2. SCY groups

2.1. Examples of SCY manifolds with b1 > 0. To the best of the authors’ knowl-
edge, all known SCY manifolds with b1 > 0 are infrasolvmanifolds. (We refer to [Hi02]
for the rather elaborate definition of infrasolvmanifold and a discussion of their basic
properties, from which we will draw in what follows.) In fact, these have appeared in
the literature in various forms, and we attempt here to describe them in a uniform
way:
– T 2–bundles over T 2. These manifolds are symplectic, by [Ge92], and it is well–
known (see e.g. [Li06a]) that for these manifolds K = 0. T 2–bundles over T 2 admit
a solvmanifold structure, and in fact they constitute the entire class of solvmanifolds
with 2 ≤ b1 ≤ 4 (see e.g. [Ha05, Proposition 1]);
– S1–bundles over a torus bundle T 2 ↪→ N3 → S1, with the S1–bundle restricting
trivially to the fiber T 2. These manifolds are symplectic, by [FGM91], and the fact
that K = 0 follows e.g. from [McS96, Corollary 2.4]. As these manifolds can be
described as mapping tori of a selfdiffeomorphism of T 3, they admit an infrasolvman-
ifold structure, see [Hi02, Chapter 8]. Some of these manifolds have the structure of
T 2–bundles over T 2 (hence solvmanifolds) on the nose while other have an abelian
cover that does (see [FV11]) but it is not clear if they all do;
– Cohomologically symplectic infrasolvmanifolds. (Manifolds M for which there exist
a class in H2(M ;R) of positive square.) These are symplectic, by [Ka11]. As they are
covered by a T 2–bundle over T 2, K must be torsion hence (using [McS96, Corollary
2.4] if b+ = 1) they have K = 0.

In fact, by the observations above, the class of symplectic infrasolvmanifolds include
all known examples of SCY manifolds. (It is not clear to the authors if there exist, in
dimension 4, symplectic infrasolvmanifolds which are not actual solvmanifold; if that
does not happen, the list would therefore reduce to T 2–bundles over T 2.)

In [FV11] the authors showed that, for 4–manifolds that admit a circle action, the
list is complete.
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The manifolds above are all Eilenberg–Maclane spaces, hence their fundamental
groups are Poincaré duality groups of cohomological dimension 4. As fundamental
groups of infrasolvmanifolds, they are virtually poly–Z, hence residually finite. As
b1(M) > 0, these manifolds fiber over S1 ([Hi02, Lemma 3.14]) hence by [Lü94a] the

L2–Betti number b
(2)
1 (M) vanishes. Two other integral invariants, the Hausmann–

Weinberger invariant q(G) ([HW85]) and the Kotschick invariant p(G) ([Ko93]) de-
fined respectively as

q(G) = inf{χ(X)}, p(G) = inf{χ(X)− |σ(X)|}
(where the infimum is taken among all 4–manifolds X with π1(X) = G) vanish as
well ([Hi02, Corollary 3.12.4]).

2.2. Bauer–Li constraints. If we assume the point of view that symplectic infra-
solvmanifolds should exhaust the class of SCY manifolds, we must look for evidence
that SCY groups satisfy conditions known to hold for fundamental groups of that
class of manifolds, such as the vanishing of the invariants discussed in the previous
section. In this section we will use the constraints of Theorem 1.2 to determine these
invariants for SCY groups.

First of all, part (1) of Theorem 1.2, together with Lück’s Approximation Theorem
for L2–invariants ([Lü94b]), yields the following:

Lemma 2.1. Let G be a residually finite SCY group with b1(G) > 0. Then the

L2–Betti number b
(2)
1 (G) = 0.

Proof. As G is residually finite, there exists a nested cofinal sequence of normal finite
index subgroups Gi ▹G. For this sequence, limi[G : Gi] = ∞. By [Lü94b], we have

b
(2)
1 (G) = lim

i

b1(Gi)

[G : Gi]
.

As G is SCY, so is each finite index subgroup Gi ▹G. It then follows from Theorem

1.2 that all Betti numbers b1(Gi) are bounded above by 4, hence b
(2)
1 (G) = 0. �

This result allows us to determine immediately the two other integral invariants
of G, q(G) and p(G). Lemma 2.1 implies, by a fairly standard argument, that these
invariants vanish:

Proposition 2.2. Let G be a residually finite SCY group with b1(G) > 0. Then
q(G) = p(G) = 0.

Proof. For any 4–manifold X with π1(X) = G we have by standard facts of L2-
invariants (see e.g. [Lü02]) that

χ(X) = 2b
(2)
0 (X)− 2b

(2)
1 (X) + b

(2)
2 (X) = b

(2)
2 (X).

Here we used the fact that G is infinite, which implies b
(2)
0 (X) = b

(2)
0 (G) = 0, and

Lemma 2.1, which implies b
(2)
1 (X) = b

(2)
1 (G) = 0. Therefore, χ(X) ≥ 0 and χ(X) =



6 STEFAN FRIEDL AND STEFANO VIDUSSI

b
(2)
2 (X) = b

(2)
2,+(X) + b

(2)
2,−(X) ≥ |b(2)2,+(X) − b

(2)
2,−(X)| = |σ(X)|, from which q(G) ≥ 0

and p(G) ≥ 0 follow. On the other hand, by definition of SCY group there exists a
SCY manifold M with π1(M) = G for which the equalities are attained. �

A good amount of wishful thinking may give the expectation that the conditions
2 ≤ b1(G) ≤ vb1(G) ≤ 4, q(G) = p(G) = 0 characterize symplectic infrasolvmani-
fold groups, with the exclusion of the somewhat exceptional Z2 (the 2–dimensional
symplectic infrasolvmanifold group), see below. (The first condition is certainly not
sufficient, as the example of Z3 shows; here, q(Z3) = 2, see [Ko94, Lemma 5.1].) Most
likely, this expectation is unfounded: it is however interesting to compare it with an
(imperfect) analog of this problem, namely a characterization of 3–manifolds that
fiber over the circle with trivial Euler class in terms of virtual Betti numbers. We
have the following.

Proposition 2.3. Let G be a closed orientable 3–manifold group such that 1 ≤
b1(G) ≤ vb1(G) ≤ 3; then either G is the fundamental group of a (unique up to homeo-
morphism) 3–manifold N that fibers over the circle with Euler class e = 0 ∈ H2(N ;Z)
or G is infinite cyclic.

Proof. First, assume that G is freely indecomposable. By Kneser’s Theorem, this is
equivalent to G being the fundamental group of a prime 3–manifold. As a conse-
quence G is either finite, infinite cyclic, or the fundamental group of a 3–dimensional
aspherical manifold N . We exclude the first condition, for which b1(G) = 0, and
proceed with the last one. If N is atoroidal, then by the work of Agol and Wise
([Wi12] and [Ag12]) we have vb1(G) = ∞, see also [AFW12] for references. Similarly,
if N contains an incompressible torus which is not a virtual fiber of a fibration, then
vb1(G) = ∞ by [Koj87, Lue88]. Therefore, N must contain a virtual torus fiber,
that is promoted to a torus fiber in a cover π : Ñ → N . Now, as b1(G) > 0, there
is a nontrivial class ϕ ∈ H1(N) that lifts to a nontrivial class in π∗ϕ ∈ H1(Ñ). As
Ñ is a torus bundle, by standard facts all nontrivial elements of H1(Ñ) correspond
to fibrations, hence π∗ϕ is a fibered class. But then so must ϕ, namely N itself is
a T 2–bundle over S1. To complete the proof, observe that if G is a nontrivial free
product of fundamental groups of prime 3–manifolds, as all 3–manifold groups are
residually finite, it is easy to see that vb1(G) = ∞ on the nose. �

2.3. Surface bundle groups. All known SCY manifolds are finitely covered by a
T 2–bundle over T 2, hence the corresponding SCY groups are virtually surface bundle
groups. Virtual surface bundle groups are therefore a good starting point to probe how
restrictive the constraints of Theorem 1.2 are. The results on the numerical invariants
described above provide a partial answer to this question. For those groups, Lück

proved in [Lü94a] the vanishing of b
(2)
1 (G), so Lemma 2.1 is inconclusive. On the other

hand, Kotschick proved in [Ko94, Theorem 3.8] that aspherical manifolds realize the
values of q(p) and p(G); this, and [Ko98, Theorem 2], entail that q(G) ≥ p(G) > 0
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whenever G is the fundamental group of a surface bundle over a surface where base
and fiber have genus greater than 1. Proposition 2.2 applies then to show that such
a G is not an SCY group.

We will see that we can complete this result by verifying (with one exception) that,
in the class of groups that arise as fundamental groups of a surface bundle over a
surface, only the groups discussed in Section 2.1 are SCY. This is a consequence of
the following result, which has some interest per se. We denote by Σg an orientable
surface of genus g.

Theorem 2.4. Let Σh ↪→ M → Σg be a surface bundle over a surface. Then π1(M)
is large if and only if max(g, h) > 1.

Proof. The “only if” part of the statement is elementary. When g > 1, the “if”
part follows from the surjectivity of the map π1(M) → π1(Σg) and the fact that the
fundamental group of a surface of genus g admits a surjection onto the free group on g
generators. So the interesting case is Σh ↪→ M → T 2, for h > 1. Choose a homology
basis {s, t ∈ H1(T

2)}. This determines a marking S1
s ×S1

t of the base of the fibration.
Correspondingly, we can consider the fibration M → S1

s with 3–dimensional fiber
Ft that is itself a Σh–bundle over S1

t , the monodromy of the latter fibration being
the restriction of the monodromy of M along S1

t . The fibration M → S1
s arises

then as mapping torus of an automorphism ϕ : Ft → Ft. By the Nielsen–Thurston
classification of automorphisms of surfaces, we can now split the problem in three
cases, depending on the isotopy class of the monodromy of Ft.

(1) The monodromy of Ft → S1
t is pseudo–Anosov. In this case Ft is hyperbolic,

whence Aut(Ft) is a finite group so that ϕ ∈ Aut(Ft) can be assumed to have
finite order p. The cover of M determined by

π1(M) → π1(S
1
s ) → Zp

is then the product Ft × S1
s . By the work of Agol and Wise (see again [Ag12,

Wi12, AFW12]), π1(Ft) is large, and the result follows.
(2) The monodromy of Ft → S1

t is periodic. Denote by q its period. The cover of
M determined by

π1(M) → π1(S
1
t ) → Zq

is then the product Fs×S1
t , where Fs is the Σh–bundle over S

1
s , the monodromy

of the latter fibration being the restriction of the monodromy of M along S1
s .

Invoking the work of Agol and Wise again, π1(Fs) is large and the result
follows.

(3) The monodromy of Ft → S1
t is reducible. This implies (see e.g. [CSW11,

Theorem 2.15]) that, after suitable isotopy of the monodromy, there is an
incompressible JSJ torus T ⊂ Ft, intersecting each fiber in a disjoint union of
circles preserved by the monodromy. Recall that π1(T ) ⊂ π1(Ft) is separable
by [LN91], i.e. for any γ ∈ π1(Ft) \ π1(T ), there exist an epimorphism to a
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finite group α : π1(Ft) → Q such that α(γ) /∈ α(π1(T )). We now need the
following virtual extension result:

Claim. Let G = ΓoZ where Γ is a finitely generated group, and let α : Γ → Q
be an epimorphism onto a finite group; then there exists an integer d such that
α extends to the normal subgroup Gd = Γo dZ▹G with α(γ,m) = α(γ).

This claim is well-known (see e.g. [Bu11]), but for the reader’s convenience
we give a quick proof. We denote by ϕ the automorphism of Γ which corre-
sponds to the semidirect product. Note that Hom(Γ, Q) is a finite set (here
we need that Γ is finitely generated). It follows that Γ contains only finitely
subgroups such that the quotient is isomorphic to Q. Therefore there exists
an r ∈ N such that ϕr(Ker(α)) = Ker(α). In particular ϕr induces an auto-
morphism of Q = Γ/Ker(α). Since Γ/Ker(α) is finite there exists an s ∈ N
such that ϕrs induces the identity on Γ/Ker(α). We write d := rs. We will
now show that Ker(α) o dZ is a normal subgroup of Γ o dZ, which clearly
implies the claim. Let (g, kd) ∈ Ker(α)o dZ and (h, ld) ∈ Γo Z. Then

(h, ld)−1(g, kd)(h, ld) = (ϕ−ld(h−1),−ld)(g, kd)(h, ld)
= (ϕ−ld(h−1),−ld)(gϕkd(h), kd+ ld)
= (ϕ−1(h−1)ϕ−ld(g)ϕkd−ld(h), kd)
= (ϕ−ld(h−1gϕkd(h)), kd).

Recall that ϕkd(h)h−1 lies in Ker(α), it thus follows that h−1gϕkd(h) lies in
Ker(α). Furthermore ϕd preserves Ker(α), it thus follows that ϕ−ld(h−1gϕkd(h))
also lies in Ker(α). This concludes the proof of the claim.
The claim applies to the fundamental group of a fibration over S1, and

asserts that an epimorphism from the fundamental group of the fiber virtually
extends, and does so in such a way that the epimorphism is constant along
the orbit of the Z–action on the fundamental group of the fiber.
Using the claim for G = π1(M) = π1(Ft) o π1(S

1
s ) it now follows from

[Koj87, Proposition 5] that, possibly after going to a finite cover of M , we
can assume that T ⊂ Ft is nonseparating. Also, as the number of JSJ tori
of Ft is finite (see e.g. [Bo02, Theorem 3.4]) we can assume (perhaps up to
going to a cover of M and up to an isotopy of ϕ), that the automorphism
ϕ : Ft → Ft restricts to an automorphism of T , which implies that there
exists a nonseparating 3–manifold Λ ⊂ M that restricts to T in each fiber
of M → S1

s . We can now proceed along the lines of [Lub96, Lemma 2.4] to
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complete the proof: consider the commutative diagram

1 // π1(T )

��

// π1(Λ)

��

// Z
∼=
��

// 1

1 // π1(Ft \ νT )

��

// π1(M \ νΛ)

��

// Z
∼=
��

// 1

1 // π1(Ft) // π1(M) // Z // 1,

where ν denotes an open tubular neighborhood. Note that the leftmost and
rightmost vertical maps are injective. It follows that the middle vertical maps
are injective as well.
We now pick an identification νΛ = Λ×[−1, 1] ⊂ M . We write C := M \νΛ

and given τ ∈ [−1, 1] we write Λτ := Λ× τ . By the above we have a subgroup
inclusion π1(Λτ ) ≤ π1(C) ≤ π1(M) for τ = ±1. We can now view π1(M) as
an HNN extension

π1(M) = ⟨π1(C), t |π1(Λ−1) = tπ1(Λ1)t
−1⟩.

By separability, there exists an epimorphism α : π1(Ft) → Q onto a finite
group such that α(π1(T )) � α(π1(Ft \ νT )). This entails, using the claim
again, that (perhaps on a cover of M) we have an epimorphism α : π1(M) →
Q such that α(π1(Λ±1)) � α(π1(C)). We now write A := α(π1(C)) and
B± := α(π1(Λ±1)) � A. It follows from the properties of an HNN extension
that α induces an epimorphism

π1(M) = ⟨π1(C), t |π1(Λ−1) = tπ1(Λ1)t
−1⟩ → K := ⟨A, t |B− = tB+t

−1⟩.
Since A is a finite group it follows from [Se80, Prop 11 p. 120] and from [Se80,
Exercise 3 p. 123] that K admits a finite index subgroup which is a nonabelian
free group. In particular, π1(M) contains a finite index subgroup that surjects
onto a nonabelian free group, i.e. π1(M) is large.

�
We note that the proof Theorem 2.4 implies, more generally, that π1(M) is large

whenever M is a bundle over S1 with fiber a closed irreducible 3-manifold with non-
trivial JSJ decomposition.

Denoting by πg the fundamental group of an orientable surface of genus g we obtain
from Theorem 2.4 immediately the following result:

Proposition 2.5. Let 1 → πh → G → πg → 1 be an extension of a surface group πg

by a surface group πh. Then if G is a SCY group either g = h = 1 or G equals the
trivial group or Z2.

All fundamental groups allowed by this proposition are known to be SCY except
for G = Z2. We are not aware of any method to exclude this case. If such a manifold
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did exist, though, it would be homeomorphic to S2 × T 2 (see e.g. [Hi02, Corollary
6.11.1]) but as K = 0 it would not be diffeomorphic to it, a very interesting manifold
indeed.

Remark. While it is not clear whether the constraints of Theorem 1.2 are sufficient
to characterize SCY groups, we can ask whether other constrains are available. The
authors of this note proved in [FV11] that if a symplectic manifold M with trivial
canonical class carries a free circle action, then a stronger version of Theorem 1.2
holds, namely vb1(M ;Fp) ≤ 4 for any prime p (the conditions χ(M) = σ(M) = 0
are trivially satisfied). The interest of this enhanced result is that it allows one to
use, in suitable circumstances, information on the growth of mod p homology, like the
Lubotzky alternative for linear groups (see e.g. [LS03, Window 9, Corollary 18] and
[La09, Theorem 1.3]), that is stronger than what is available with Z–coefficients. It is
not perhaps unreasonable to conjecture therefore that any symplectic 4–manifold with
K = 0 satisfies vb1(M ;Fp) ≤ 4. As a corollary of a result of Lackenby [La10, Theorem
1.10] we can assert a weak form of this result: Given any epimorphism ϕ : π(M) → Z
(which exist as b1(M) ≥ 1), the cyclic covers Mk with fundamental group ϕ−1(kZ)
must satisfy lim supk b1(Mk;Fp) < ∞, otherwise π1(M) would be large.

3. The Homeomorphism Type of SCY 4–manifolds

In this section we prove Theorem 1.4. We start with the following theorem, which
paraphrases ([Ec97, Theorem 6]) of Eckmann:

Theorem 3.1. (Eckmann) Let M be a 4–manifold with b
(2)
0 (M) = b

(2)
1 (M) =

b
(2)
2 (M) = 0 whose fundamental group G = π1(M) satisfies H2(G,Z[G]) = 0; then
either G is virtually infinite cyclic, or M = K(G, 1).

Combining this theorem with Lemma 2.1 we obtain the following result, equivalent
to Theorem 1.4:

Theorem 3.2. Let M be an SCY 4–manifold with fundamental group G. Assume
that G := π1(M) is residually finite and satisfies b1(G) > 0 and H2(G,Z[G]) = 0.
Then M = K(G, 1).

Proof. As G = π1(M) is infinite, b
(2)
0 (M) vanishes, and so does b

(2)
1 (M), by Lemma

2.1. The Euler characteristic χ(M) = 2b
(2)
0 (M) − 2b

(1)
2 (M) + b

(2)
2 (M) equals zero by

Theorem 1.2, hence b
(2)
2 (M) = 0 as well. We can apply then Eckmann’s Theorem.

The case where G is virtually cyclic, i.e. Z▹f.i. G, can be excluded: by Theorem 1.2
we have b1(G) ≥ 2 and the Betti number is nondecreasing on finite index subgroups.
The statement now follows. �

Checking the details of the proof of Theorem 3.1 it is possible to see that the group
H2(G,Z[G]) coincides with π2(M), and that this is the only obstruction to M being
aspherical. The condition H2(G,Z[G]) = 0 is not too restrictive; in particular, it is
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satisfied by all (virtual) duality groups of (virtual) cohomological dimension at least
3, see [Br94, Sections 10, 11].

By considering the examples of SCY infrasolvmanifolds we have the corollary:

Corollary 3.3. Let G be a SCY group arising as fundamental group of an infrasolv-
manifold. Then the corresponding symplectic manifolds are unique up to homeomor-
phism.

Proof. Let M be any SCY infrasolvmanifold, and denote G = π1(M). The manifold
M is an Eilenberg–Maclane space of type K(G, 1), from which we deduce that G is a
Poincaré duality group of cohomological dimension 4 andH2(G,Z[G]) = 0. Moreover,
G is virtually poly–Z hence residually finite by a classical result due to Hirsch. We
can then apply Theorem 1.4 to show that any SCY X with fundamental group equal
to G is homotopic to M . But with virtually poly–Z groups we can apply to machinery
of [FQ90] to deduce that X is actually homeomorphic to M , see e.g. [FJ90, Theorem
2.16]. �

Baldridge and Kirk [BK07, Conjecture 23] formulated the following conjecture: Let
X and Y be 4-manifolds which realize the minimum of the Hausmann–Weinberger
invariant of a group G. If X and Y have equivalent intersection forms, then they are
in fact diffeomorphic.

We will now argue that this conjecture implies in particular that SCY manifolds
with a given group G are unique up to diffeomorphism. We first show that for a SCY
manifold, the intersection form is determined by the fundamental group G. In fact by
Theorem 1.2 the rank is determined by b1(G) and the signature is always zero (hence
the form is indefinite), and as the characteristic element K vanishes, the parity is
even. The argument is thus completed by the fact that a SCY manifold realizes the
minimum value q(G) = 0.
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