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1. RECHNEN MODULO n

Natiirliche und ganze Zahlen kann man addieren und multiplizieren, und hierbei gelten ge-
wisse Regeln, die uns jetzt nach vielen Schuljahren vollig selbstverstéindlich sind. Beispielsweise
gilt immer

a+b = b+a Kommutativgesetz
(a+b)+c = a+(b+c) Assoziativgesetz
alb+c¢) = ab+ac Distributivgesetz.

Manchmal kann es aber sinnvoll sein, auch mit anderen Zahlensystemen zu arbeiten. Beispiels-
weise mochten wir gerne folgende Frage moglichst schnell beantworten

Frage: Heute ist Mittwoch. Was fiir ein Wochentag ist in 33 Tagen?
Bei den Wochentagen kommt es natiirlich auf 7 Tage hin- oder her nicht drauf an. Also ist

Wochentag in 33 Tagen = Wochentag 4 -7 + 5 Tage nach Mittwoch

=33
= Wochentag 5 Tage nach Mittwoch

= Montag.

Wir konnen die Losung der Aufgabenstellung nun formalisieren. Es sei n im Folgenden eine
beliebige Zahl, z.B. n = 7. Fiir eine beliebige andere natiirliche Zahl £ schreiben wir nun

kmodulon := der Rest von k geteilt durch n.
Beispielsweise ist
33modulo7 =5 und 35 modulo7 = 0.
T T
denn 33 =4-7+5 denn 35 =5-7+0

Das Schone am Rechnen modulo n ist, dass die gleichen Regeln wie zuvor gelten. Beispielsweise
ist
19-34+19-4 modulo7 = 19-(3+4) modulo7 = 19-0 modulo 7= 0 modulo 7.

T T
Distributivgesetz denn 3 + 4 = 0 modulo 7



Wir kénnen nun unsere urspriingliche Aufgabe in dieser Sprache formulieren. Wir weisen
dazu den Wochentagen die Zahlen 0, ..., 6 wie folgt zu:

Montag 0 Freitag 4

Dienstag 1 Samstag 5

Mittwoch 2 Sonntag 6
Donnerstag 3.

Mit dieser Ubersetzung ist die urspriingliche Frage also:

Frage: Was ist 2+ 33 modulo 77
Diese Frage kann man nun leicht 16sen, denn

2+ 33 modulo 7 = 35 modulo 7 = 0.

Die 0 entspricht gerade Montag, also erhalten wir, dass in 33 Tagen ein Montag ist.

2. KRYPTOGRAPHIE

Die Kryptographie beschéftigt sich mit der Frage, wie man einen Text verschliisseln und dann
auch wieder entschliisseln kann.

Die einfachste und wohl bekannteste Verschliisselungsmethode geht angeblich auf César
zuriick: man verschiebt einfach jeden Buchstaben im Alphabet um “eins nach rechts”. Die
Verschliisselung ist also gegeben durch

AABCDEVFGHTIJZ KL LMNOP QI RSTUVWIXXYZ

A R R N e A
ABCDETFGHTIUJKLMDNOPI QRSTUVUWIXYZ

Den letzten Buchstaben Z schickt man dann natiirlich auf A. Hier ist ein Beispiel:

urspriinglicher Text DIES IST EIN SEHR EINFACHER SCHLUESSEL
verschliisselter Text EJFT JTU FJO TFIS FJOGBDIFS TDIMVFTTFM

Die Entschliisselung ist dann dadurch gegeben, dass wir jeden Buchstaben im Alphabet um
“eins nach links” verrutschen.

Wir kénnen diesen Verschliisselungsalgorithmus wieder in die Sprache von “modulo n” iibersetzen.
Im vorherigen Beispiel hatten wir den Wochentagen die Zahlen 0 bis 6 zugeordnet. Jetzt ordnen
wir den 26 Buchstaben die Zahlen 0 bis 25 auf die offensichtliche Weise zu:

ABCDEFGHIJ X L M N O P Q R S T UV W X Y Z
0123456789 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Der Verschliisselungsalgorithmus ist dann gegeben durch die FunktionE]

n +— n+1 modulo 26.

'An der Universitiit verwendet man hier lieber das Wort Abbildung als das Wort Funktion, aber das kann
uns jetzt egal sein.



Der Entschliisselungsalgorithmus ist dann natiirlich gegeben durch die Funktion
n +~— n—1 modulo 26.

Man kann dieses Spiel natiirlich auch leicht abéndern, beispielsweise konnte man genauso gut
um 5 Buchstaben nach links verschieben.

Es gibt aber auch noch andere Verschliisselungsmethoden. Wir kénnen ja nicht nur “modulo
26" addieren, sondern auch multiplizieren. Betrachten wir beispielsweise die Funktion

n +— 3-n modulo 26.

Ausgeschrieben erhalten wir also die Funktion

0123 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

S T S I T e R S R R T T S R R
0369 12151821241 4 7 10 13 16 19 22 25 2 5 8 11 14 17 20 23

In Buchstaben iibersetzt ergibt uns das

ABCDETFGHTIUJEKLMDNOPI QRSTUVUWIXYZ
N T S S e e T S S S S S N N TR S A A
ADGJMPSVYBEHE KIDNG QTWZCTFTITLOTRTU X

Wir erhalten beispielsweise folgende Verschliisselung;:

urspriinglicher Text DIESER SCHLUESSEL IST KOMPLIZIERTER ALS DER VORHERIGE
verschliisselter Text JYMCMZ CGVHIMCCMH YCF EQKTHYXYMZFMZ AHC JMZ LQZVMZYSM

Es stellt sich hierbei die Frage, wie man denn die Entschliisselung am einfachsten beschreiben
kann. Wir werden dieser Frage in den Ubungsaufgaben nachgehen.

Wir haben also gerade jeden Buchstaben mit drei multipliziert. Wie schaut’s aus, wenn wir
anstattdessen mit zwei multipliziert hiatten? Betrachten wir also die Funktion

n +—  2-n modulo 26.

Ausgeschrieben erhalten wir also die Funktion

012345 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N T T T e e N S S A T S N
0 246 81012 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24

In Buchstaben iibersetzt ergibt uns das

ABCDETFGHTIJIEKLMNOPO QRSTUVWIXYZ
N T T S N T N e S A e R N R I TN SR A
A CEGIZKMORQSUWYACEGTIZEKMDOR QS SUUWY

Wir erhalten beispielsweise folgende Verschliisselung;:

urspriinglicher Text DIESER SCHLUESSEL TAUGT NIX
verschliisselter Text GQIKII KEOWOIKKIW MAOMM AQU
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Diese “Verschliisselung” ist allerdings ziemlich nutzlos, denn man kann aus dem verschliisselten
Text den urspriinglichen Text nicht mehr herleiten, nachdem in diesem Fall sowohl dem Buch-
staben E als auch dem Buchstaben R der Buchstabe I zugewiesen wird.

Es stellt sich also folgende Frage.

Frage 2.1. Fir welche k ist die Funktion
n+— k-n modulo 26

eine brauchbare Verschliisselung? Mit anderen Worten, fir welche k folgt aus a # b auch

k-a # k-bmodulo26?
Bevor wir die Frage genauer betrachten fithren wir erst einmal noch eine Definition ein.

Definition. Eine Funktion f: A — B von einer Menge A zu einer Menge B heif3t injektiv, wenn
fiir a # o’ aus A auch folgt, dass f(a) # f(da').

Beispiele.
(1) Die Funktion
f:A={0,...,25} — B=/{0,...,25}
n + 3-n modulo 26
ist injektiv. Dies sieht man sofort anhand der obigen Tabelle, denn zwei verschiede-
nen Zahlen aus {0,...,25} werden durch diese Funktion immer auch zwei verschiedene

Zahlen aus {0, ...,25} zugeordnet.
(2) Die Funktion

fiA=10,...,25)
n
ist nicht injektiv, denn f(13) = f(0) =
(3) Die Funktion

{0,...,25}

B
2-n modulo 26

=11

ffA=R — B=R
x — 2’

ist nicht injektiv, denn f(—2) =4 = f(2).

Manchmal 148t sich eine Frage wie Frage [2.1]einfacher beantworten, wenn man gleich versucht
eine allgemeinere Frage zu beantworten. Dies klingt vielleicht eigenartig, aber der Grund ist,
dass man sich bei einer allgemeineren Frage auf das Wesentliche konzentriert und nicht auf das
Unwesentliche.

Folgende Frage ist nun eine Verallgemeinerung von Frage [2.1]

Frage 2.2. Es sei m € N. Fiir welche k € {0,...,m — 1} ist die Funktion

A={0,....m—-1} — B={0,....,m—1}
n +— k-n modulo m

injektiv?
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Wenn man etwas mit dem Beispiel “modulo 26” oder auch mit anderen Beispielen umher-
spielt, dann kommt irgendwann der Verdacht auf, dass die Antwort davon abhéngt, ob k£ und

m einen gemeinsamen Teiler haben, oder nicht. Der folgende Satz besagt, dass dies in der Tat
der Fall ist.

Satz 2.3. Es seim € N und es sei k € {0,...,m—1}. Dann sind die folgenden beiden Aussagen
dquivalent:

(1) k ist teilerfremd zu m,
(2) die Funktion
A={0,....m—-1} — B={0,....,m—1}
n +— k-n modulo m
st ingektiv.
Fiir den Beweis von Satz [2.3] benotigen wir folgendes Lemma.

Lemma 2.4. Es seien m,k,r € N. Wir nehmen an, dass m|k - r. Wenn m und k teilerfremd
sind, dann gilt schon m|r.

Beweis von Lemma[2.4. Es seim = p{*-----p die Primfaktorzerlegung von m. Der Faktor p"
kann nicht k teilen, denn m und £ sind nach Voraussetzung teilerfremd. Also muss der Faktor
p;" den zweiten Faktor r teilen. Nachdem dies fiir alle Faktoren der Fall ist folgt, dass m|r. O

Beweis von Satz[2.3. Wir zeigen zuerst “(1) = (2)”. Wir nehmen also an, dass k teilerfremd
zu m ist. Es seien a,b € {0,...,m — 1}. Wir miissen zeigen, dass gilt

a # b modulo m — k-a#k-b modulo m.
Diese Aussage ist dquivalent zur Aussage

k-a=Fk-b modulo m — a ="b modulo m.
Diese zweite Aussage beweisen wir nun wie folgt:

k-a=k-b modulo m = k-a—k-b=0 modulo m = k-(a—0)=0 modulo m
= mlk-(a—b) = m|(a—b) = a=0>b modulo m.
/]\

folgt aus Lemma [2.4] und der Voraussetzung, dass m and k teilerfremd sind

Wir zeigen nun “(2) = (1)”. Wir fiihren einen indirekten Beweis durch. D.h. wir zeigen, dass
wenn k nicht teilerfremd zu m ist, dann ist die Funktion nicht injektiv.

Wir nehmen nun also an, dass k nicht teilerfremd zu m ist. Es sei # = ggT(m, k). Nach
Voraussetzung ist > 1. Wir schreiben nun k£ = xy und m = xz mit y, 2 € N. Nachdem z > 1
gilt z € {1,...,m — 1}, d.h. es ist

z # 0 modulo m.
Andererseits gilt

k-z = = y- 2z, =0 modulom = k-0 modulom.

Y 2
~—

=k =m
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Also ist Multiplikation mit & nicht injektiv. U

3. INJEKTIVE UND SURJEKTIVE FUNKTIONEN

Wenn wir modulo m rechnen, dann kénnen wir problemlos addieren, subtrahieren und multi-
plizieren. Man kann sich nun fragen, wann es beziiglich der Multiplikation ein inverses Element
gibt.

Frage 3.1. Es sei m € N. Fiir welche k € {1,...,m — 1} gibt es ein 1 € {0,...,m — 1} mit
k-l = 1 modulo m?

Beispiele. Es sei wiederum m = 26.

(1) Wir haben im vorherigen Kapitel gesehen, dass es zu k = 3 solch ein [ gibt, nédmlich
[=09.

(2) Andererseits hatten wir im vorherien Kapitel auch gesehen, dass es fiir & = 2 kein solches
[ gibt.

Es dréngt sich also etwas der Verdacht auf, dass die Antwort zu Frage [3.1] vielleicht die
Gleiche ist wie zu Frage [2.2] Bevor wir Frage [3.1] beantworten konnen, miissen wir noch einen
weiteren Begriff einfiithren.

Definition. Es sei f: A — B eine Funktion von einer Menge A zu einer Menge B.

(1) Wir hatten gerade eingefiihrt, dass f injektiv heifit, wenn fiir a # o’ aus A folgt, dass
auch f(a) # £(d)

(2) Wir sagen nun, dass f surjektiv ist, wenn es zu jedem b € B ein a € A mit f(a) = b
gibt.

Bemerkung. Eine Funktion, welche sowohl injektiv als auch surjektiv ist, wird normalerweise
bijektiv genannt.

Beispiele.
(1) Die Tabelle aus dem vorherigen Kapitel zeigt, dass die Funktion

f:A={0,...,25} — B=1{0,...,25}
n — 3-n modulo 26

injektiv und surjektiv ist.
(2) Die Funktion

g: A=1{0,...,25} — B=H{0,...,25}
n +— 2-n modulo 26
ist weder injektiv noch surjektiv. Wir hatten oben schon gesehen, dass die Funktion

nicht injektiv ist. Zudem folgt aus der Tabelle aus Kapitel 2, dass es zu b = 1 keine Zahl
a mit 2 - a = 1 modulo 26 gibt, d.h. die Funktion ¢ ist nicht surjektiv.



(3) Die Funktion
A=N, — B=N,
n = n+1
ist injektiv aber nicht surjektiv, denn fiir b = 0 gibt es kein a € Ny mit f(a) = 0.
(4) Die Funktion
A=R — B=[-1,1]
x +— sin(z)

ist surjektivf] aber nicht injektiv, denn es ist sin(r) = sin(0).

Wir sehen also in den Beispielen, dass injektiv und surjektiv unabhéingige Begriffe sind.
Andererseits dringt sich der Verdacht auf, dass die Funktion n + k - nmodulom injektiv ist,
genau dann, wenn die Funktion surjektiv ist.

Dies ist in der Tat der Fall. Fiir die Formulierung des néchsten Satzes bendtigen wir noch
die Notation, dass wir fiir eine endliche Menge A mit # A die Anzahl der Elemente bezeichnen.
Beispielsweise gilt

#{0,...,m—1} = #{1,...,m} = m.

Satz 3.2. Es sei f: A — B eine Funktion zwischen zwei endlichen Mengen A und B. Wenn
#A = #B, dann gilt:
f st ingektiv <= f ist surjektiv.

Bemerkung. Eigentlich ist die Aussage von Satz ganz logisch. Nehmen wir an, sie organisie-
ren ein Essen mit n Gésten und besitzen einen Tisch mit n Stithlen. Wir bezeichnen mit A die
Menge der Géste und mit B die Menge der Stiihle. Eine Funktion f: A — B ist dann nichts
anderes als ein Sitzplan. Die Funktion f ist injektiv, wenn verschiedene Géste auf verschiedenen
Stiihlen sitzen, und die Funktion f ist surjektiv, wenn jeder Stuhl belegt ist. In diesem Fall ist
es klar, dass f “injektiv” ist, genau dann, wenn f surjektiv ist.

Beweis. Wir beweisen nur die Richtung “=" des Satzes. Der Beweis der Riickrichtung ist fast
wort-wortlich der Gleiche: wir miissen im Folgenden nur die Worter “injektiv” und “surjektiv”
vertauschen.

Wir beweisen nun die Richtung “=" per Induktion nach #A = #B. Wenn #A = #B = 1,
dann besitzen sowohl A als auch B jeweils nur ein Element a und ein Element b. Es gibt dann
nur eine Funktion von A nach B, ndmlich f(a) = b. Diese Funktion ist natiirlich surjektiv.

Nehmen wir nun an, dass die Aussage fiir alle Mengen mit #A = #B = k gilt. Es sei nun
f: A — B eine injektive Funktion zwischen zwei Mengen A und B mit #A = #B = k+1. Es sei
a € A. Wir setzen b = f(a). Dann ist die Einschréinkung von f auf f: A\{a} — B\{b} weiterhin
injektiv. Nachdem wir aus A und B jeweils ein Element rausgenommen haben, besitzen die

2Hier ist es natiirlich wichtig, dass B = [—1,1]. Die Funktion

A=R — B=R
x — sin(x)

ist nicht surjektiv, denn fiir b = 2 € R gibt es kein a € R mit sin(a) = 2.
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Mengen A\ {a} und B\ {b} jeweils k& Elemente. Also ist die Funktion f: A\ {a} — B\ {b}
nach Induktionsvoraussetzung surjektiv. Aber dann ist auch f: A — B surjektiv 0J

Wir kénnen nun Frage [3.1] beantworten.

Satz 3.3. Es seim € N und es sei k € {0,...,m — 1}. Dann sind die folgenden drei Aussagen
dquivalent:

(1) k ist teilerfremd zu m,
(2) die Funktion

A={0,....m—-1} - B={0,...,m—1}

n +— k-n modulo m

18t surjektiv,
(3) es gibt eine Zahll € {1,...,m — 1} mit

k-l = 1 modulo m.

Beweis. Es sei m € N und es sei k € {0,...,m — 1}. Die Aquivalenz von (1) und (2) folgt
sofort aus Satz [2.3) und aus Satz[3.2] Es ist klar, dass (2) = (3)[]Zudem folgt aus (3) auch (2),
denn nehmen wir an es gibt ein [ € {1,...,m — 1} mit k- [ = 1 modulom. Dann gilt fiir jedes
be{0,...,m—1}, dass k- (Ib) = b modulom. O

Wenn k und m teilerfremd sind, dann besagt also Satz[3.3], dass es ein [ mit k- = 1 modulom
gibt. Allerdings gibt der Satz, und auch der Beweis, keinen Hinweis darauf, wie man den nun
solch ein [ finden kann. Es stellt sich also folgende Frage:

Frage 3.4. Es seien k und m teilerfremde Zahlen. Wie kann man aus k und m ein [ bestimmen,

so dass
k-l = 1 modulo m?

4. PRIMZAHLEN

Verschliisselungsalgorithmen spielen im Internet eine wichtige Rolle. Beispielsweise will man
mit Kreditkarten zahlen konnen, ohne dass beim Verschicken der Kreditkartennummer jemand
diese abfangen kann. Die verwendeten Algorithmen sind natiirlich weniger naiv als die im Ka-
pitel 1 genannten, aber sie basieren auch auf den Tricks der “elementaren Zahlentheorie”. Einer
der sichersten Algorithmen nennt sich RSA-Algorithmus. Dieser ist zu lange um ihn in dieser
kurzen Vorlesung zu erldutern, er ist aber im Prinzip so einfach, dass man ihn mit Schulkennt-
nissen verstehen kann. Details kann man, wie iiblich, auf Wikipedia finden

https://de.wikipedia.org/wiki/RSA-Kryptosystem

Um den RSA-Algorithmus zu verwenden bendttigt man sehr grofle Primzahlen, mit etwa 100
Stellen. Es stellt sich also folgende Frage:

3In der Tat, denn sei b’ € B. Wenn b’ = b, dann ist f(a) = b'. Wenn b # b', dann gibt es ein ' € A\ {a} mit
fla) ="

4In der Tat, denn “surjektiv” bedeutet, dass es zu jedem b € {0,...,m — 1} ein a mit k-a = bmodulom gibt.
Fiir b = 1 erhalten wir gerade die gewiinschte Aussage.
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Frage 4.1. Wie kann man schnell feststellen, ob eine beliebige 100-stellige Zahl eine Primzahl
1st?

Der iibliche Schulalgorithmus ist wie folgt: man {iberpriift, ob die gegebene Zahl n durch 2
teilbar ist, dann durch 3, dann durch 5, dann durch 7 usw. Dieser Algorithmus ist allerdings
unglaublich langsam. Wenn n eine Primzahl ist mit 100 Stellen, dann wiirde der Schulalgorith-
mus langer als die Lebensdauer des Universums brauchen, um zu zeigen, dass n in der Tat eine
Primzahl ist.

Zum Gliick gibt’s in der Praxis einen deutlich schnelleren Algorithmus. Der Mathematiker
Fermat hat im 17. Jahrhundert folgendes Theorem bewiesen.

Kleiner Fermatscher Satz. Es sei p eine Primzahl und es sei a € {1,...,p— 1}. Dann gilt

a®! = 1 modulo p.

Betrachten wir beispielsweise die Primzahl p = 7 und a = 2, dann ist in der Tat
271 =20 = 64 = 7-94+1 = 1 modulo 7.
Andererseits ist fiir n = 6 und a = 2
2"l = 2% = 32 = 2 # 1 modulo 6.

Nach dem kleinen Fermatschen Satz ist also n = 6 keine Primzahl. Das war uns natiirlich
auch so klar, aber mithilfe vom kleinen Fermatschen Satz kann man in der Praxis innerhalb
von Sekunden mit an Sicherheit grenzender Wahrscheinlichkeit bestimmen, ob eine 100-stellige
Zahl eine Primzahl ist oder nicht.

Genauer gesagt, wenn n eine beliebige Zahl ist, dann kann man erstaunlich schnell 27!
modulo n ausrechnen. Wenn das Ergebnis ungleich 1 ist, dann ist n keine Primzahl. Wenn
jedoch das Ergebnis gleich 1 ist, dann ist n zwar nicht notwendigerweise eine Primzah]E], aber
dennoch mit sehr groler Wahrscheinlichkeit eine Primzahl.

Zum Beispiel, wenn n eine 100-stellige Zahl ist mit 2"~! = 1 modulon, dann ist die Wahr-
scheinlichkeit, dass n keine Primzahl hochstens 10712, D.h. die Fehlerwahrscheinlichkeit liegt
bei hochstens einem Billionstel.

Beweis. Es sei also p eine Primzahl und und es sei a € {1,...,p—1}. Nachdem p eine Primzahl
ist, und nachdem a € {1,...,p — 1} folgt, dass @ und p teilerfremd ist. Also folgt aus Satz
und aus Satz [3.3] dass die Funktion

A={1,....p—1} — B={1,....,p—1}
n + a-n modulo p

injektiv und surjektiv ist. Mit anderen Worten gilt folgende Aussage:

Beispielsweise ist 2°61 = 2 mod 561, obwohl 561 = 3 - 11 - 17 keine Primzahl ist. Mehr Details dazu kann
man auf
https://de.wikipedia.org/wiki/Carmichael-Zahl

finden.
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(%) Jede Zahl b € {1,...,p — 1} ist von der Form a - nmodulop fiir genau ein einziges
ac{l,...,p—1}.
Wir fithren nun folgende einfache Rechnung modulo p aus:

Ausklammern und Umsortieren

i)
ap—l.(l.g ..... (p—1) = (a-1)~(a-2)~~~~~(a-(p—1))l
nach (%) tauchen hie;,r modulo p, alle Zahlen
1,...,p— 1 genau einmal als Faktor auf
= Produkt der Zahlen zwischen 1 und p — 1 modulo p.
Zusammengefasst gilt also
ap—l.(l.g.....(p_l)) = 1-(1-2----- (p—1)) modulo p
Die Zahl 1-2----- (p — 1) ist teilerfremd zu p. Es folgt nun aus Satz 2.3 dass
a’~! = 1 modulo p.
Wenn m eine Primzahl ist dann kénnen wir nun eine Antwort zu Frage geben. [

Korollar 4.2. Es sei p eine Primzahl und k € {1,...,p— 1}. Wir setzen | := kP~2. Dann ist
k-l = 1 modulo p.
Beweis. Es ist
k-l = k-k"=2 = kP! = 1 modulo p.
/I\

der kleine Fermatsche Satz U

Fiir beliebiges m gibt es ebenfalls verschiedene Algorithmen um k& zu bestimmen. Man kann
dies mit einer Abwandlung von Korollar bewerkstelligen oder mit einer geschickten Anwen-
dung des euklidischen Algorithmus.
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