PICARD’S THEOREM
STEFAN FRIEDL

ABSTRACT. We give a summary for the proof of Picard’s Theorem. The proof is for the
most part an excerpt of [H].

1. INTRODUCTION

Definition. Let U C C be an open subset. A function f: U — C is holomorphic if for any

zo € U the limit

%f<20) = fz) = ZILHJOW cC
exists.

Example. We had seen in Analysis III that polynomials, the exponential function, and more
generally functions defined by power series are holomorphic. Moreover products, fractions,
sums and compositions of holomorphic functions are again holomorphic.

In Analysis III we had shown that holomorphic functions have many surprising properties.
One of the best known results is Liouville’s theorem:

Theorem 1.1. (Liouville’s Theorem) FEvery bounded holomorphic map f: C — C is
constant.

The following is a straightforward corollary to Liouvill’es Theorem.

Corollary 1.2. If f: C — C is a holomorphic function, then the image of f is dense, i.e.
giwen any z € C and any r > 0 there exists a w € C with f(w) € B,(2).

The following theorem is a significant strengthening of this corollary.

Theorem 1.3. (Picard’s Theorem) Let f: C — C be a non-constant holomorphic func-
tion. Then there exists at most one z € C which does not lie in the image of f.

Ezample. Picard’s Theorem is optimal as is shown by the holomorphic function f(z) =
exp(z), whose image equals C \ {0}.

2. COVERING THEORY
2.1. Homotopic maps.

Definition. Let X be a topological space (e.g. a metric space, e.g. a subset of R™)
1
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(1) Two paths 79,71 : [0,1] — X with the same starting point P := 7,(0) = v,(0) and
the same endpoint @) := 7o(1) = (1) are called homotopic in X, if there exists a
map

r:0,1 x[0,1] — X
(t,s) — T(t,s),
with the following properties
(a) for every t € [0, 1] we have I'(¢,0) = v(¢) and I'(¢t,1) = 71(t),
(b) for every s € [0,1] we have I'(0,s) = P and I'(0,s) = Q.
Put differently, a homotopy between two paths consists of a “continuous” family of
paths {I'(—, s) }scpp,1) from P to ) which interpolates between the paths vy and 7.

(2) We say X is simply connected if each loop v is homotopic to the constant path given

by d(t) := ~(0) for all t € [0, 1].

Ezxamples.

(1) Every convex subset of R™ is simply connected,
(2) the circle S* and R? \ {0} are not simply connected.

Definition.
(1) We write
D = {zeC||z]*<1}.
(2) We write C = C U {oco} which we equip with the topology where every set of the

form (C\ B,(0)) U {oo} is open.
(3) Given U C C we denote by U the closure of U in C. B
(4) A Jordan curve is the image of an injective map S' — C.

We can now formulate one of the key results in complex analysis. A proof is for example
provided in [GM, Chapter 1.3] and [La, Chapter X].

Theorem 2.1. (Riemann Mapping Theorem + Carathéodory Theorem) Let U be
a simply connected open subset of C with U # C. Then the following statements hold:

(1) There exists a biholomorphism ¢: U — D. -
(2) If OU is a Jordan curve, then ¢ extends to a homeomorphism U — C.

Example. We define
H = {(z,y9) e R*|y >0} = {z=az+1iyecCly>0}.
It is straightforward to verify that the maps

d:H — D q v:D — H
z2—1 an i+iw
z Z_—I—Z w T—w

are biholomorphisms that are inverse to one-another and that extend to homeomorphisms
between H and D.
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2.2. Covering maps.

Definition. Let p: X — B be a map between topological spaces.

(1) We say an open subset U C B is uniformly covered, if p~*(U) is the union of disjoint
open subsets {V;};c;r with the property, that the restriction of p to each subset V;
is a homeomorphism.

(2) We say the map p: X — B is a covering, if it is surjective and if for every b € B
there exists an open neighborhood U of b which is uniformly covered.

Ezample. The map
p:R — St
o e

is a covering. Indeed, let P = €' be a point in S'. We pick the open neighborhood

U = {ei@|cp6(a—%,a+%)}.
Then
ptU) = || (a—7F 4210+ ]+ 2m)),
=/ ~ d
:‘/]

and for each j € Z the restriction of p to V; — U is a homeomorphism. This example is
illustrated in Figure .

e “ the restriction of p
. to each Vj is a
S AN U homeomorphism

FIGURE 1.

The following theorem is a standard result in topology.

Theorem 2.2. Let X be a (reasonable) path-connected topological space. Then there exists

a unique covering p: X — X where X is simply-connected. This covering is called the
universal covering of X.

Ezample. The universal covering of the torus S* x S* = R?/Z? is R?.

Proposition 2.3. Let p: (X,z9) — (B,by) be a covering map of two pointed topologi-
cal spaces. Furthermore let Z be a (reasonable) path-connected topological space and let
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f:(Z,z0) — (B,by) be a map. If Z is simply-connected, then there exists a lift, i.e. a
commutative diagram

(X, o)

there exists a lift f/ 7 \L
p

—
—
—

(Z, 20) (B, boy)

Proof. Let z be a point in Z. We pick a path v from 2y to z. Then f o~ is a path from
by to f(z). Since p is a covering we can lift the path to a path fo~v:[0,1] — X with

~ P

starting point (f o*y) (0) = zo. We define f(z) = (f Ofy)(l). The hypothesis that Z is
simply-connected implies that f(z) does not depend on the choice of the path . O

Example. We can lift any path [0,1] — B to a path [0,1] — X. But the lift of a loop is
not necessarily again a loop.

3. HYPERBOLIC GEOMETRY
3.1. Mobius transformations.
Definition.
(1) The hyperbolic disk is the manifold
D = {zeCl|]z)* <1}

together with the Riemannian structure which assigns to the tangent space T,D = R?
at a point z € D the positive-definite symmetric form

g R?2xR? — R

(v,w) v, W)

2
TPy

where, as above, (v, w) denotes the usual scalar product on R2.

Definition. Let (M, g) be a connected Riemannian manifold.

(1) Given v € TpM we write ||v]| = /gp(v,v,).
(2) We define the length of a smooth path v: |a,b] — M as

) = J I

(3) Let P and @ be two points on M. We define
dy (P, Q) = inf{l(~)|~ is a smooth path in M from P to Q}.

This defines a metric on M.
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Ezample. We consider the Riemannian manifold (M, g) = D. For r € (0,1) we consider
the smooth path ,: [0,7] — D given by ¢ — ¢. Then

lim /() = lim f 1_273 dt = oo.

r—1 r—1 =0

In fact this curve defines the shortest path from 0 to . Thus we see that (M, g) = D has
infinite diameter.

Examples. In Figure B we see three different decompositions of D into subsets. In each of
the three cases these subsets have the same hyperbolic size, even though they differ in the

usual euclidean sense.

Definition. A hyperbolic line is a subset of D of one of the following two types:
(1) it is the intersection of D with a euclidean line through the origin, B
(2) it is the intersection of D with a euclidean circle that intersects the circle S = oD
orthogonally.
In each of the two cases we refer to the intersection of the euclidean object with S* = oD
as the endpoints of the hyperbolic line. We refer to Figure B for an illustration.

< D={zeC|lz| <1}
; A
hyperbolic line through P and @)

-

S A

N
nmn S
N\ \\Q\Q\\\\\\\x \

N\

\
\
\

— hyperbolic line through A and B

7

NN

FIGURE 3.
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Definition. A Mobius transformation of D is a map of the form
D —- D

z o el =2
1-az

for some 6 € R and a € D.
Ezxample. Rotations around the origin are precisely the Mobius transformations fixing 0.

The following proposition summarizes key properties of Mobius transformations. All
statements can be proved in an elementary fashion.

Proposition 3.1.

(1) Compositions of Mébius transformations are again Mdobius transformations and the
wwerse of a Mébius transformation is again a Mobius transformation.

(2) Mobius transformations are biholomorphisms, they are isometries, they are orientation-
preserving and they send hyperbolic lines to hyperbolic lines.

(3) Given any two hyperbolic lines there exists a Mdbius transformation that sends one
to the other.

(4) Given P,Q € D and non-zero vectors v € TpD and w € ToD with ||v||, = ||w],
there exists a Mdbius transformation ¢ with ¢(P) = Q and dpp(v) = w.

(5) Let ¢ and v be two Mdébius transformations. Suppose there exists a P € D such
that ¢(P) = ¢ (P) and such that dpp = dipp. Then ¢ = ).

3.2. Mobius structures.

Definition. Let M be a 2-dimensional manifold without boundary. A Mdbius structure
for M is a family of homeomorphisms {®;: U; — V;};c; from open subsets of M to open
subsets of D such that UU; = M and such that for any 7, j € I the transition map
el
(‘I)i|U,L-ﬁUj)_l ®jlv;nu;
—— ——
@) ch

is given by a Mobius transformation. Sometimes we refer to a manifold together with a
Mobius structure as a Maobius manifold.

The following lemma says that Mobius structures are useful for solving two problems at
once: we can use them to show that a manifold is a complex manifold and we can use them
to show that a manifold has a hyperbolic structure.

Lemma 3.2. Let M be a surface and let {®;: U; — V;}ier be a Mobius structure for M.
Then the following hold:

(1) The charts form a holomorphic atlas for M, in particular M is a complez 1-dimensional
manifold.

(2) The manifold M admits a unique Riemannian structure g such that all the charts in
the atlas {®;: U; — V;}ier are isometries.
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Definition. A Mdbius map between two Mobius manifolds is a map that, with respect to
the charts of the Mobius structures, is given by Mobius transformations.

The following lemma is a fairly straightforward consequence of Proposition B (5).

Lemma 3.3. Let ®,V: M — N be two Mdbius maps between two Mobius manifolds.
Suppose that M is path-connected. If ® and VU agree on an non-empty open connected
subset, then they agree everywhere.

3.3. Complete Riemannian manifolds.

Definition.
(1) We say that a metric space (X,d) is complete if every Cauchy sequence in (X, d)
converges.
(2) We say that a connected Riemannian manifold (M, g) is complete if the correspond-
ing metric space (M, dys) is complete.

Ezamples.

(1) The metric space given by R™ and the euclidean metric is complete.

(2) The metric space given by the open ball B™ and the euclidean metric is not complete.
Indeed the sequence a,, = 1 — % is a Cauchy sequence, but it does not converge in
the open ball B". Similarly we see that for example the metric space C\ {0, 1} with
the usual euclidean metric is not complete.

The following proposition gives a useful criterion for a metric space to be complete.
Proposition 3.4. Every compact metric space is complete.

3.4. The complex manifold H;/ ~. In the following let Q1 = 1,Q = i,Q3 = —1 and
Qo = Q4 = —i. We denote by H, the closed, non-compact subset of D that is bounded by
the four hyperbolic lines with endpoints Qy, Qr+1 where k = 0,1, 2, 3.

We can and will pick a Mobius transformation ®; that restricts to the reflection in the
z-axis on the hyperbolic line with endpoints ()5 and )3. Similarly we can and will pick a
Mobius transformation ®, that restricts to the reflection in the x-axis on the hyperbolic
line with endpoints )2 and (). We refer to Figure @ for an illustration.

Given k € {1,2} we declare any point P on the line with the endpoints @} and Q.1 to
be equivalent to ®3_(P). We denote by ~ the equivalence relation that is generated by
these equivalences.

Proposition 3.5.
(1) The topological space Hy/ ~ admits a Mébius structure. In particular it is a 1-dimen-

stonal complex manifold.
(2) The Riemannian structure on Hy/ ~ coming from (1) and Lemma &2 is complete.

Proof. We start out with the proof of (1). We have to show that H,/ ~ admits a Mo6bius
structure. We denote by p: Hy — Hy/ ~ the projection map. In the following let P €
H4/ ~.
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these hyperbolic lines —
get identified via the

e . . — these hyperbolic lines get
Mobius transformation @4 Y1 ©

identified via the
Mobius transformation ®4

FIGURE 4.

(1) If P = p(z) for some z € H,, then
Vp: p(]fl4) — ISLL
p(w) — w

is a chart around P = p(z).

(2) Now suppose that P = p(z) where z lies on 0Hy. In the following we deal with the
case that z lies on the edge from ) to Q5. All other cases are dealt with almost the
same way. We pick an r > 0 such that By, (z) intersects no other component of 0H,.
We consider the map

Yp: p(B,(2) N Hy) Up(Pa(Br(2)) N Hy)

— By(2)
pw)

w, if we B.(2)N Hy
O, (w), ifwe &7H(B.(2)) N Hy.

This map is a chart around P = p(z).

The charts that we just constructed form an atlas for Hy/ ~. It follows immediately from
the definitions that all transition maps are given by Mdébius transformations. It follows that
the maps 1p form a Mdbius structure for Hy/ ~. It follows that Hy/ ~ is a 1-dimensional
complex manifold and that these charts satisfy the conditions of Lemma B™. This concludes
the proof of (1).

We continue with the proof of (2). We have to show that the Riemannian structure
on Hy/ ~ coming from (1) and Lemma B2 is complete. By the argument of page B
any bounded sequence in Hy/ ~ stays within a compact subset. Hence it converges by
Proposition B4. U

Proposition 3.6. There ezists a biholomorphism Hy/ ~— C\ {0,1}.

In the proof of Proposition BB we need the following standard result from complex
analysis.
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Proposition 3.7. (Schwarz Reflection Principle) Let U be an open subset of the upper
half-plane {z € C|Im(z) > 0} and let f: U — C be a continuous function with the
following properties:

(1) f is holomorphic on U= {z € U|Im(z) > 0},

(2) f only assumes real values on U NR.
We set U :={Z|z € U}, i.e. U’ is the reflection of U in the x-axis. Then the function

f:vut — C
{ f(z), ifzel,
Z =

@), ifzel,

18 holomorphic.

FiGURrE 5. Ilustration of the Schwarz reflection principle.

Proof of Proposition 4. We denote by A the open subset of D bounded by the three
hyperbolic lines with endpoints —1,1 and i. (We refer to Figure B for an illustration
of A.) It follows from applying the Riemann Mapping Theorem PZI that there exists a
biholomorphism ¥: A — D that extends to a homeomorphism ¥: A — D. We combine
U with the above biholomorphism from I to H. This way we obtain a biholomorphism
®: A — H that extends to a homeomorphism ®: A — H.

After possibly applying a Mobius transformation of H we can assume that ®(i) = oo
and that ®({—1,1}) = {0,1}.

Note that ® restricts to a homeomorphism ®: A — OH = R U {oo}. By the above we
have ®(0A) = R\ {0,1}. Now we consider the map

U H, — C\{0,1}
d(2), if z €A,
zZ = - _
B(z), ifzeh,
Note that by the above we have f((—1,1)) = (0,1). Thus it follows from the Schwarz

Reflection Principle, see Proposition B7, that the restriction of ¥ to the interior of Hy is

holomorphic. By construction of ~ we know that if P and () are two equivalent points on
OHy, then U(P) = ¥(Q). Therefore the map ¥ factors through a map Hy/ ~— C\ {0, 1}.
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goes to oo

(I): Z — E - : - .

z— O(Z)

—7 ——— goes to 0o

FIGURE 6. Illustration of the proof of Proposition B@

Using once again the Schwarz Reflection Principle one can show that this map is in fact a
biholomorphism. We leave the verification of this step as an exercise to the reader. 0

3.5. The universal cover of H,/ ~.

Proposition 3.8. Let Hy/ ~ be the three-punctured sphere with the Mobius structure
constructed in Proposition @d. Then there exists a covering map p: D — Hy/ ~ which is
a local biholomorphism.

Remark.

(1) We consider again the covering p: D — H,/ ~ that we had just constructed. The
interior of Hy is uniformly covered. In particular we see that
D\ p '(0H,) = | | copies of ..
——
“l-dimensional”

Put differently, up to the “one-dimensional” subset p~!(0H;) we can cover D by
infinitely many disjoint copies of the open hyperbolic octagon. Such a decomposition
is often called a tessellation. This tessellation is shown in Figure [a.

FIGURE 7.
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(2) Since D is simply-connected we see that p: D — Hy/ ~ is the universal covering of
Hy/ ~.

Proof of Proposition Z38. In the following we will show that there exists a Mobius map
p: D — M := Hy/ ~ that is in fact a covering map.
For the remainder of the proof we adopt the following notation and conventions.
(1) We view H, as a subset of D and also of Hy/ ~.
(2) Given Z € D we denote by
Vz: [07 1]
t
the radial path from the origin 0 € D to Z.
(3) We say that U C D is convez if it is convex in the usual euclidean sense, i.e. if given
any P,Q € U the points t - P+ (1 —t)-Q, t € [0, 1] also lie in U.
Our first goal is to construct a suitable map p: D — M = Hy/ ~. So let Z € D. We

write 7 = 7. We say ¢t € [0,1] is good if there exists a convex open neighborhood U
of v([0,t]) and a map V: U — H,/ ~ which has the following properties:

— D
—~ t-Z

(i) ¥ is a Mobius map,
(ii) it restricts to the identity on HyNU C Hy/ ~.
We start out with the following lemma.

Lemma 3.9. The pointt =1 is good.

Proof. We set
T := {t€][0,1]|tis good}.
We start out with the following observations:

(1) We have that 0 € T since the identity on the open neighborhood H, of 0 has the
required properties.”
(2) Being good is clearly an open condition, hence T' C [0, 1] is open.
We want to show that 7" = [0, 1]. By the above, and since [0, 1] is connected, it suffices to
show that s := sup(7’) is good.

Since 0 € S and since T is open we see that s > 0. Therefore there exists an increasing
sequence {t, }nen of good numbers ¢, € [0,t) that converges to s. Since each ¢, is good we
can pick for each n a convex open neighborhood U, of ([0, ¢,,]) and a map ¥,,: U,, — Hy/ ~
that has the desired properties (i) and (ii).

Let m,n € N. The Mobius maps ¥,, and V¥, agree on the non-empty open connected
subset ]il NU, NU,. It follows from Lemma BZ3 that the maps ¥,, and ¥, agree on
U, NUp,.

By the continuity of v the sequence {7(t,)}nen converges to ¥(t), in particular it is a
Cauchy sequence with respect to dp. Since the maps ¥,, are Mdbius maps they are local

1Hereby we use that for each point Z € }L the identity map id: ﬁ4 — ﬁ4 is part of the M6bius structure
of H4/ ~.
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isometries, hence it follows that {W, (y(t,))}nen is a Cauchy sequence with respect to dyy.
By Proposition B3 the metric space (M = Hy/ ~,dyr) is complete. Therefore the Cauchy
sequence {V,(v(t,)) }nen converges to a point S € Hy/ ~.

It follows easily from Proposition B (3) that there exists an r > 0 and a Mdobius
isomorphism Q: B?(0) — BM(S) such that Q(0) = S. We pick an n such that ¥, (y(t,)) €
BM(S) and such that dp(y(t),v(s)) < r. We write t = t,,¥ = ¥, U = U, and we
write X = ~(t). Let v € T)y/D be a non-zero vector. We let w := d(Q27! o W), (v). The
Mébius maps 2 and ¥ are in particular local isometries, therefore we have ||w|| = ||v||. Tt
follows from Proposition B (4) that there exists a Mobius transformation © with ©(X) =
Q7 1(¥(X)) and such that dOx(v) = w.

The situation is illustrated in Figure B. The Mobius maps Q0 ©: B?(X) — H,/ ~ and

Mobius transformation ©

FIGURE 8.

It follows from

U: U — Hy/ ~ agree at X = v(t) and we have d(Q2 0 O)x(v) = d¥x(v).
Lemma B33 that Q 0 © and ¥ agree on the path-connected set BY(X)NU.
Now we consider the map

B:UUBY(1) — Hif ~
v(Q), ifQel,
@ { gels) toe Bum)

By the above discussion this map is well-defined and it is locally a Mdbius map, hence it
is a Mobius map. It follows from dp(7y(),7(s)) < r and the fact that 7 is a geodesic in D
that v([t, s]) € B2(v(t)), in particular U U B®(v(t)) is an open subset of ID that contains
([0, ¢]) U ~([t, s]) = ([0, s]). It is now straightforward to see that we can find a convex
open subset W of U U BP(~(t)) that contains ([0, s]). The M&bius map ®: W — Hy/ ~
now certifies that s is also good. 0

Thus we have now shown that there exists a convex open neighborhood U of 7(]0, 1])
and a local isometry W: U — Hy/ ~ which agrees with the identity map on U N H,. We
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define p(Z) := ¥(Z). By Lemma BZ3 this definition does not depend on the choice of U
and W.
The following lemma now concludes the proof of Proposition B8

Lemma 3.10.

(1) The map p: D — Hy/ ~ is a Mébius map.
(2) The map p: D — Hy/ ~ is a covering map.

Proof.

(1) It follows basically from the construction of p that it is a Mobius map.

(2) First we show that the map p: D — M = H/ ~ is surjective. Recall that by
construction p is the identity on hof4. Since p is continuous it follows that the
restriction of p to Hy — M = H,/ ~ is surjective.

It remains to show that every @ € Hy/ ~ admits a uniformly covered neighbor-
hood. Let Q € Hy/ ~. We pick an r > 0 such that an r-neighborhood around @ is
isometric to B,’(0). Then one can show fairly easily that U = B,),(Q) is uniformly
covered. U

O

4. THE PROOF OF PICARD’S THEOREM

Theorem 4.1. (Picard’s Theorem) Let f: C — C be a non-constant holomorphic func-
tion. Then there exists at most one z € C which does not lie in the image of f.

Proof. Let f: C — C be a holomorphic function such that there exist two different complex
numbers a, b that do not lie in the image of f. We need to show that f is constant. We
consider the biholomorphism

a:C\ {a,b} — C\{0,1}

Ly 270
b—a’

Furthermore we denote by 8: C\{0,1} — H,/ ~ the biholomorphism from Proposition B8.
Now we consider the following diagram of maps

D

p

c Lo\ {a,0} 2~ C\{0,1} = Hy/ ~

where p: D — H,/ ~ is the covering map from Proposition B=S.
Since C is simply connected we can appeal to Proposition P23 to obtain a lift of the
map foao f: C — Hy/ ~ to the universal cover. More precisely, there exists a map
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ﬁg;g f: C — D such that the following diagram commutes

C=—

f
It follows from the fact that 5 o « o f is holomorphic and the fact that p is a local bi-

C\ {a,b} —~C\{0,1} —=Hi/ ~.

holomorphism, that the map foao f: C — D is also holomorphic. But I is of course

bounded. Therefore it follows from Liouville’s Theorem [ that S o o o f is constant. But
then Soao f is also constant. Since a and [ are biholomorphisms this implies that f itself
is already constant. O
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