The Thurston norm via Fox calculus

STEFAN FRIEDL

(joint work with Kevin Schreve and Stephan Tillmann)

Let N be a compact orientable 3-manifold. The Thurston seminorm of a class $\phi \in H^1(N; \mathbb{Z}) = H_2(N, \partial N; \mathbb{Z})$ is defined as

$$x(\phi) := \min \{ \chi_{-}(\Sigma) \mid \Sigma \subseteq N \text{ properly embedded surface dual to } \phi \}.$$

Here, given a surface Σ with connected components $\Sigma_1 \cup \cdots \cup \Sigma_k$, we define its complexity to be $\chi_-(\Sigma) = \sum_{i=1}^k \max\{-\chi(\Sigma_i), 0\}$. A class $\phi \in H^1(N; \mathbb{R})$ is called *fibered* if it can be represented by a non-degenerate closed 1-form. By [19] an integral class $\phi \in H^1(N; \mathbb{Z}) = \operatorname{Hom}(\pi_1(N), \mathbb{Z})$ is fibered if and only if there exists a fibration $p \colon N \to S^1$ such that $p_* = \phi \colon \pi_1(N) \to \pi_1(S^1) = \mathbb{Z}$.

Thurston [18] showed that x is a seminorm on $H^1(N; \mathbb{Z})$ which extends to a seminorm on $H^1(N; \mathbb{R})$. He also considered the norm ball

$$\mathcal{N}_N := \{ \phi \in H_1(N; \mathbb{R}) : x(\phi) \le 1 \}$$

and the corresponding dual norm ball

$$\mathcal{P}_N := \{ v \in H_1(N; \mathbb{R}) : \phi(v) \le 1 \text{ for all } \phi \in \mathcal{N}_N \}.$$

He showed that \mathcal{P}_N is a polytope with integral vertices, i.e. with vertices in $\operatorname{Im}\{H_1(N;\mathbb{Z})/\operatorname{torsion} \to H_1(N;\mathbb{R})\}$. Furthermore, Thurston showed that we can turn \mathcal{P}_N into a marked polytope \mathcal{M}_N which has the property that a cohomology class $\phi \in H^1(N;\mathbb{R})$ is fibered if and only if it pairs maximally with a marked vertex, i.e. if and only if there exists a marked vertex v of \mathcal{M}_N such that

$$\phi(v) > \phi(w)$$
 for all $v \neq w \in \mathcal{P}_N$.

Now let $\pi = \langle x, y | r \rangle$ be a presentation with two generators and one relator, such that r is cyclically reduced and such that $b_1(\pi) = 2$. In [9] we associated to such a presentation π a marked polytope \mathcal{M}_{π} in $H_1(\pi; \mathbb{R})$ as follows:

- (1) We start at the origin and walk across $H_1(\pi; \mathbb{Z}) = \mathbb{Z}^2$ as dictated by the word r which we start reading from the left.
- (2) We take the convex hull of all the points reached in (1). We furthermore mark all vertices which get hit only once by the path in (1).
- (3) We take the midpoints of all the squares in the convex hull that touch a vertex of the polytope defined in (2). We mark a midpoint if all the corresponding vertices in (2) are marked.
- (4) We take the marked polytope corresponding to the set of points in (3) and denote it by \mathcal{M}_{π} .

An alternative, more formal definition of \mathcal{M}_{π} is given in [9] in terms of the Fox derivatives of r. The main result of [10] says the following.

Theorem 1. Let N be an irreducible, compact, orientable 3-manifold that admits a presentation $\pi = \langle x, y | r \rangle$ as above. Then

$$\mathcal{M}_N = \mathcal{M}_{\pi}$$
.

The following corollary gives the statement of the theorem in a slightly more informal fashion. The method for reading off the fibered classes in $H^1(N;\mathbb{R})$ from r is closely related to Brown's algorithm [5].

Corollary 2. If N is an irreducible, compact, orientable 3-manifold that admits a presentation $\pi = \langle x, y | r \rangle$ as above, then the Thurston norm and the set of fibered classes can be read off from the relator r.

In the proof of Theorem 1 we use the definition of \mathcal{M}_{π} in terms of Fox derivatives. This makes it possible to relate the polytope \mathcal{M}_{π} to the chain complex of the universal cover of the 2-complex corresponding X to the presentation π . This makes it possible to study the 'size' of \mathcal{M}_{π} using twisted Reidemeister torsions of X. These twisted Reidemeister torsions agree with twisted Reidemeister torsions of N since X is simple homotopy equivalent to N.

In the following we denote by \mathcal{P}_N and \mathcal{P}_{π} the polytopes \mathcal{M}_N and \mathcal{M}_{π} without the markings. At this point the proof of Theorem 1 breaks up into three parts:

- (1) We first show that $\mathcal{P}_N \subset \mathcal{P}_{\pi}$. Put differently, we need to show that \mathcal{P}_{π} is 'big enough' to contain \mathcal{P}_N . We show this using the main theorem of [11] which says that twisted Reidemeister torsions detect the Thurston norm of N. This result in turn relies on the work of Agol [1], Liu [14], Przytycki-Wise [16, 15] and Wise [21] which says in this context that Agol's virtual fibering theorem [1] applies.
- (2) Next we need to show the reverse inclusion $\mathcal{P}_{\pi} \subset \mathcal{P}_{N}$. This means that we need to show that \mathcal{P}_{π} is 'not bigger than necessary'. At this stage it is crucial that r is cyclically reduced. By [20] this implies that all summands in the Fox derivative $\frac{\partial r}{\partial x}$ are distinct elements in the group ring $\mathbb{Z}[\pi]$. Using the fact that $\pi_{1}(N)$ is residually torsion-free elementary-amenable (which is a consequence of the aforementioned papers [1, 2, 14, 16, 15, 21] and a result of Linnell–Schick [13]) and using the non-commutative Reidemeister torsions of [6, 8, 12] we show that indeed $\mathcal{P}_{\pi} \subset \mathcal{P}_{N}$.
- (3) Finally we need to show that the markings of \mathcal{M}_N and \mathcal{M}_{π} agree. We prove this using Novikov-Sikorav homology [4, 17].

REFERENCES

- [1] I. Agol, Criteria for virtual fibering, J. Topol. 1 (2008), no. 2, 269–284.
- [2] I. Agol, The virtual Haken conjecture, with an appendix by I. Agol, D. Groves and J. Manning, Documenta Math. 18 (2013), 1045–1087.
- [3] M. Aschenbrenner, S. Friedl and H. Wilton, 3-manifold groups, Preprint (2013)
- [4] R. Bieri, Deficiency and the geometric invariants of a group, With an appendix by Pascal Schweitzer, J. Pure Appl. Algebra 208 (2007), 951–959.
- [5] K. S. Brown, Trees, valuations, and the Bieri-Neumann-Strebel invariant, Invent. Math. 90 (1987), 479-504.
- [6] T. Cochran, Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004), 347–398.
- [7] N. Dunfield, Alexander and Thurston norms of fibered 3-manifolds, Pacific J. Math. 200 (2001), no. 1, 43-58.
- [8] S. Friedl, Reidemeister torsion, the Thurston norm and Harvey's invariants, Pac. J. Math. 230 (2007), 271–296.

- [9] S. Friedl and S. Tillmann, Two-generator one-relator groups and marked polytopes, preprint, 2015
- [10] S. Friedl, K. Schreve, S. Tillmann, Thurston norm via Fox calculus, preprint, 2015.
- [11] S. Friedl and S. Vidussi, *The Thurston norm and twisted Alexander polynomials*, Preprint (2012), to be published by J. Reine Ang. Math.
- [12] S. Harvey, Higher-order polynomial invariants of 3-manifolds giving lower bounds for the Thurston norm, Topology 44 (2005), 895-945.
- [13] P. Linnell and P. Schick, Finite group extensions and the Atiyah conjecture, J. Amer. Math. Soc. 20 (2007), no. 4, 1003–1051.
- [14] Y. Liu, Virtual cubulation of nonpositively curved graph manifolds, J. Topol. 6 (2013), no. 4, 793–822.
- [15] P. Przytycki and D. Wise, Graph manifolds with boundary are virtually special, J. Topology 7 (2014), 419–435.
- [16] P. Przytycki and D. Wise, Mixed 3-manifolds are virtually special, preprint (2012).
- [17] J.-C. Sikorav, Homologie de Novikov associée à une classe de cohomologie réelle de degré un, thèse, Orsay, 1987.
- [18] W. P. Thurston, A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 59, no. 339 (1986), 99–130.
- [19] D. Tischler, On fibering certain foliated manifolds over S¹, Topology 9 (1970), 153–154.
- [20] C. Weinbaum, On relators and diagrams for groups with one defining relation, Illinois J. Math. 16 (1972), 308–322.
- [21] D. Wise, From riches to RAAGs: 3-manifolds, right-angled Artin groups, and cubical geometry, CBMS Regional Conference Series in Mathematics, 2012.