NON–COMMUTATIVE MULTIVARIABLE REIDEMEISTER TORSION AND THE THURSTON NORM

STEFAN FRIEDL AND SHELLY HARVEY

ABSTRACT. Given a 3-manifold the second author defined functions $\delta_n : H^1(M; \mathbb{Z}) \to \mathbb{N}$, generalizing McMullen's Alexander norm, which give lower bounds on the Thurston norm. We reformulate these invariants in terms of Reidemeister torsion over a non-commutative multivariable Laurent polynomial ring. This allows us to show that these functions are semi-norms.

1. INTRODUCTION

Let M be a 3-manifold. Throughout the paper we will assume that all 3-manifolds are compact, connected and orientable. Let $\phi \in H^1(M; \mathbb{Z})$. The *Thurston norm* of ϕ is defined as

 $||\phi||_T = \min\{\chi_-(S) \mid S \subset M \text{ properly embedded surface dual to } \phi\}$

where given a surface S with connected components S_1, \ldots, S_k we write $\chi_-(S) = \sum_{i=1}^k \max\{0, -\chi(S_i)\}$. We refer to [Th86] for details. Generalizing work of Cochran [Co04] the second author introduced in [Ha05] a

Generalizing work of Cochran [Co04] the second author introduced in [Ha05] a function

$$\delta_n: H^1(M; \mathbb{Z}) \to \mathbb{N}_0 \cup \{-\infty\}$$

for every $n \in \mathbb{N}$ and showed that δ_n gives a lower bound on the Thurston norm for every n. These functions are invariants of the 3-manifold and generalize the Alexander norm defined by C. McMullen in [Mc02]. We point out that the definition we use here differs slightly from the original definition when n = 0 and a few other special cases. We refer to Section 4.3 for details.

The relationship between the functions δ_n and the Thurston norm was further strengthened in [Ha06] (cf. also [Co04] and [Fr05]) where it was shown that the δ_n give a never decreasing series of lower bounds on the Thurston norm, i.e. for any $\phi \in H^1(M; \mathbb{Z})$ we have

$$\delta_0(\phi) \le \delta_1(\phi) \le \delta_2(\phi) \le \dots \le ||\phi||_T.$$

Furthermore it was shown in [FK05c] that under a mild assumption these inequalities are an equality modulo 2.

Date: October 31, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 57M27; Secondary 57N10.

 $Key\ words\ and\ phrases.$ Thurston norm, 3-manifolds, Alexander norm.

Thurston [Th86] showed in particular that $|| - ||_T$ is a seminorm. It is therefore a natural question to ask whether the invariants δ_n are seminorms as well. In [Ha05] this was shown to be the case for n = 0. The following theorem, which is a special case of the main theorem of this paper (cf. Theorem 4.2), gives an affirmative answer for all n.

Theorem 1.1. Let M be a 3-manifold with empty or toroidal boundary. Assume that $\delta_n(\phi) \neq -\infty$ for some $\phi \in H^1(M; \mathbb{Z})$, then

$$\delta_n: H^1(M; \mathbb{Z}) \to \mathbb{N}_0$$

is a seminorm.

This in particular allows us to show that the sequence $\{\delta_n\}$ is eventually constant. That is, there exists an $N \in \mathbb{N}$ such that $\delta_n = \delta_N$ for all $n \ge N$ (cf. Proposition 4.4).

Initially we discuss a more algebraic problem. Recall that given a multivariable Laurent polynomial ring $\mathbb{F}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ over a commutative field \mathbb{F} we can associate to any non-zero $f = \sum_{\alpha \in \mathbb{Z}^m} a_{\alpha} t^{\alpha} \in \mathbb{F}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ a seminorm on $\operatorname{Hom}(\mathbb{Z}^m, \mathbb{R})$ by

$$||\phi||_f := \sup\{\phi(\alpha) - \phi(\beta) | a_\alpha \neq 0, a_\beta \neq 0\}.$$

Furthermore, to any square matrix B over $\mathbb{F}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ with $\det(B) \neq 0$ we can associate a norm using $\det(B) \in \mathbb{F}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$.

Generalizing this idea to the non-commutative case, in Section 2.1 we introduce the notion of a multivariable skew Laurent polynomial ring $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ of rank m over a skew field \mathbb{K} . Given a square matrix B over $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ we can study its Dieudonné determinant det(B) which is an element in the abelianization of the multiplicative group $\mathbb{K}(t_1, \ldots, t_m) \setminus \{0\}$ where $\mathbb{K}(t_1, \ldots, t_m)$ denotes the quotient field of $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$. This determinant will in general not be represented by an element in $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$. Our main technical result (Theorem 2.2) is that nonetheless there is a natural way to associate a norm to B which generalizes the commutative case.

Given a 3-manifold M and a 'compatible'-representation

$$\pi_1(M) \to \operatorname{GL}(\mathbb{K}[t_1^{\pm 1}, \dots, t_m^{\pm 1}], d)$$

we will show in Section 3 that the corresponding Reidemeister torsion can be viewed as a matrix over $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$. We will show in Section 4.3 that for appropriate representations the norm which we can associate to the matrix over $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ agrees with δ_n . In particular, this implies Theorem 1.1. We conclude this paper with examples of links for which we compute the Thurston norm using these invariants.

As a final remark we point out that the results in this paper completely generalize the results in [FK05b]. Furthermore the results can easily be extended to studying 2-complexes together with the Turaev norm which is modeled on the definition of the Thurston norm of a 3-manifold. We refer to [Tu02a] for details.

Acknowledgments: The authors would like to thank Tim Cochran, John Hempel, Taehee Kim and Chris Rasmussen for helpful conversations.

 $\mathbf{2}$

2. The non-commutative Alexander norm

2.1. Multivariable Laurent polynomials. Let \mathcal{R} be a (non-commutative) domain and $\gamma : \mathcal{R} \to \mathcal{R}$ a ring homomorphism. Then we denote by $\mathcal{R}[s^{\pm 1}]$ the one-variable skew Laurent polynomial ring over \mathcal{R} . Specifically the elements in $\mathcal{R}[s^{\pm 1}]$ are formal sums $\sum_{i=m}^{n} a_i s^i$ ($m \leq n \in \mathbb{Z}$) with $a_i \in \mathcal{R}$. Addition is given by addition of the coefficients, and multiplication is defined using the rule $s^i a = \gamma^i(a)s^i$ for any $a \in \mathcal{R}$ (where $\gamma^i(a)$ stands for ($\gamma \circ \cdots \circ \gamma$)(a)). We point out that any element $\sum_{i=m}^{n} a_i s^i \in \mathcal{R}[s^{\pm 1}]$ can also be written uniquely in the form $\sum_{i=m}^{n} s^i \tilde{a}_i$, indeed, $\tilde{a}_i = s^{-i} a_i s^i \in \mathcal{R}$.

In the following let \mathbb{K} be a skew field. We then define *multivariable skew Laurent* polynomial ring of rank m over \mathbb{K} (in non-commuting variables) to be a ring R which is an algebra over \mathbb{K} with unit (i.e. we can view \mathbb{K} as a subring of R) together with a decomposition $R = \bigoplus_{\alpha \in \mathbb{Z}^m} V_{\alpha}$ such that the following hold:

- (1) V_{α} is a one-dimensional K-vector space,
- (2) $V_{\alpha} \cdot V_{\beta} = V_{\alpha+\beta},$
- (3) $V_{(0,...,0)} = \mathbb{K}.$

In particular R is \mathbb{Z}^m -graded. Note that these properties imply that any V_{α} is invariant under left and right multiplication by \mathbb{K} , that any element in $V_{\alpha} \setminus \{0\}$ is a unit, and that R is a (non-commutative) domain.

The example to keep in mind is a commutative Laurent polynomial ring $\mathbb{F}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$. Let $t^{\alpha} := t_1^{\alpha_1} \cdots t_m^{\alpha_m}$ for $\alpha = (\alpha_1, \ldots, \alpha_m)$, then $V_{\alpha} = \mathbb{F}t^{\alpha}, \alpha \in \mathbb{Z}^m$ has the required properties.

Let R be a multivariable skew Laurent polynomial ring of rank m over \mathbb{K} . To make our subsequent definitions and arguments easier to digest we will always pick $t^{\alpha} \in V_{\alpha} \setminus \{0\}$ for $\alpha \in \mathbb{Z}^m$. It is easy to see that we can in fact pick $t^{\alpha}, \alpha \in \mathbb{Z}^m$ such that $t^{n\alpha} = (t^{\alpha})^n$ for all $\alpha \in \mathbb{Z}^m$ and $n \in \mathbb{Z}$. Note that this choice in particular implies that $t^{(0,\ldots,0)} = 1$. We get the following properties:

- (1) $t^{\alpha}t^{\tilde{\alpha}}t^{-(\alpha+\tilde{\alpha})} \in \mathbb{K}^{\times}$ for all $\alpha, \tilde{\alpha} \in \mathbb{Z}^{m}$, and
- (2) $t^{\alpha}\mathbb{K} = \mathbb{K}t^{\alpha}$ for all α .

This shows that the notion of multivariable skew Laurent polynomial ring of rank m is a generalization of the notion of twisted group ring of \mathbb{Z}^m as defined in [Pa85, p. 13]. If m = 1 then we have $t^{(n)} \in V_{(n)}$ such that $t^{(n)} = (t^{(1)})^n$ for any $n \in \mathbb{Z}$. We write $t^n = t^{(n)}$. In particular we have a one-variable skew Laurent polynomial ring as above.

The argument of [DLMSY03, Corollary 6.3] can be used to show that any such Laurent polynomial ring is a (left and right) Ore domain and in particular has a (skew) quotient field. We normally denote a multivariable skew Laurent polynomial ring of rank m over \mathbb{K} suggestively by $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ and we denote the quotient field of $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ by $\mathbb{K}(t_1, \ldots, t_m)$.

2.2. The Dieudonné determinant. In this section we recall several well-known definitions and facts. Let \mathcal{K} be a skew field. In our applications \mathcal{K} will be the

quotient field of a multivariable skew Laurent polynomial ring. First define $GL(\mathcal{K}) := \lim GL(\mathcal{K}, n)$, where we have the following maps in the direct system: $GL(\mathcal{K}, n) \rightarrow \mathcal{K}$

 $\operatorname{GL}(\mathcal{K}, n+1)$ given by $A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$, then define $K_1(\mathcal{K}) = \operatorname{GL}(\mathcal{K})/[\operatorname{GL}(\mathcal{K}), \operatorname{GL}(\mathcal{K})].$ For details we refer to [Mi66] or [Tu01].

Let A a square matrix over \mathcal{K} . After elementary row operations and destabilization we can arrange that in $K_1(\mathcal{K})$ the matrix A is represented by a 1×1 -matrix (d). Then the Dieudonné determinant $\det(A) \in \mathcal{K}_{ab}^{\times} := \mathcal{K}^{\times}/[\mathcal{K}^{\times}, \mathcal{K}^{\times}]$ (where $\mathcal{K}^{\times} := \mathcal{K} \setminus \{0\}$) is defined to be d. It is well-known that the Dieudonné determinant induces an isomorphism det : $K_1(\mathcal{K}) \to \mathcal{K}_{ab}^{\times}$. We refer to [Ro94, Theorem 2.2.5 and Corollary 2.2.6] for more details.

2.3. Multivariable skew Laurent polynomial rings and seminorms. Let $\mathbb{K}[s^{\pm 1}]$ be a one-variable skew Laurent polynomial ring and let $f \in \mathbb{K}[s^{\pm 1}]$. If f = 0 then we write deg $(f) = -\infty$, otherwise, for $f = \sum_{i=m}^{n} a_i s^i \in \mathbb{K}[s^{\pm 1}]$ with $a_m \neq 0, a_n \neq 0$ we define deg(f) := n - m. This extends to a homomorphism deg : $\mathbb{K}(s) \setminus \{0\} \to \mathbb{Z}$ via deg $(fg^{-1}) = \deg(f) - \deg(g)$. Since deg is a homomorphism to an abelian group this induces a homomorphism deg : $\mathbb{K}(s)_{ab}^{\times} \to \mathbb{Z}$. Note that throughout this paper we will apply the convention that $-\infty < a$ for any $a \in \mathbb{Z}$.

For the remainder of this section let $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ be a multivariable skew Laurent polynomial ring of rank m together with a choice of $t^{\alpha}, \alpha \in \mathbb{Z}^m$ as above. Let $f \in \mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$. We can write $f = \sum_{\alpha \in \mathbb{Z}^m} a_{\alpha} t^{\alpha}$ for some $a_{\alpha} \in \mathbb{K}$. We associate a seminorm $||_{-}||_{f}$ on $\operatorname{Hom}(\mathbb{R}^m, \mathbb{R})$ to f as follows. If f = 0, then we set $||_{-}||_{f} := 0$. Otherwise we set

$$||\phi||_f := \sup\{\phi(\alpha) - \phi(\beta) | a_\alpha \neq 0, a_\beta \neq 0\}.$$

Clearly $||_{-}||_{f}$ is a seminorm and does not depend on the choice of t^{α} . This seminorm should be viewed as a generalization of the degree function.

Now let $\tau \in K_1(\mathbb{K}(t_1, \ldots, t_m))$ and let $f_n, f_d \in \mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}] \setminus \{0\}$ such that $\det(\tau) = f_n f_d^{-1} \in \mathbb{K}(t_1, \ldots, t_m)_{ab}^{\times}$. Then define

$$||\phi||_{\tau} := \max\{0, ||\phi||_{f_n} - ||\phi||_{f_d}\}$$

for any $\phi \in \text{Hom}(\mathbb{R}^m, \mathbb{R})$. By the following proposition this function is well-defined.

Proposition 2.1. Let $\tau \in K_1(\mathbb{K}(t_1,\ldots,t_m))$. Let $f_n, f_d, g_n, g_d \in \mathbb{K}[t_1^{\pm 1},\ldots,t_m^{\pm 1}] \setminus \{0\}$ such that $\det(\tau) = f_n f_d^{-1} = g_n g_d^{-1} \in \mathbb{K}(t_1,\ldots,t_m)_{ab}^{\times}$. Then

$$||_{-}||_{f_n} - ||_{-}||_{f_d} = ||_{-}||_{g_n} - ||_{-}||_{g_d}.$$

We postpone the proof to Section 2.4.

Let *B* be a matrix defined over $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$. Then it is in general not the case that det $(\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}])$ can be represented by an element in $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$. But we still have the following result which is the main technical result of this paper.

Theorem 2.2. If $\tau \in K_1(\mathbb{K}(t_1, \ldots, t_m))$ can be represented by a matrix defined over $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$, then $||_{-}||_{\tau}$ defines a seminorm on $Hom(\mathbb{R}^m, \mathbb{R})$.

We postpone the proof to Section 2.5.

Now let $\phi : \mathbb{Z}^m \to \mathbb{Z}$ be a non-trivial homomorphism. We will show that $||\phi||_B$ can also be viewed as the degree of a polynomial associated to B and ϕ . We begin with some definitions. Consider

$$\mathbb{K}[\operatorname{Ker}(\phi)] := \bigoplus_{\alpha \in Ker(\phi)} \mathbb{K}t^{\alpha} \subset \mathbb{K}[t_1^{\pm 1}, \dots, t_m^{\pm 1}].$$

This clearly defines a subring of $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ and the argument of [DLMSY03, Corollary 6.3] shows that $\mathbb{K}[\operatorname{Ker}(\phi)]$ is an Ore domain with skew field which we denote by $\mathbb{K}(\operatorname{Ker}(\phi))$.

Let $d \in \mathbb{Z}$ such that $\operatorname{Im}(\phi) = d\mathbb{Z}$ and pick $\beta = (\beta_1, \ldots, \beta_m) \in \mathbb{Z}^m$ such that $\phi(\beta) = d$. Let $\mu := t^{\beta}$. Then we can form one-variable Laurent polynomial rings $(\mathbb{K}[\operatorname{Ker}(\phi)])[s^{\pm 1}]$ and $\mathbb{K}(\operatorname{Ker}(\phi))[s^{\pm 1}]$ where $sk := \mu k \mu^{-1} s$ for all $k \in \mathbb{K}[\operatorname{Ker}(\phi)]$ respectively for all $k \in \mathbb{K}(\operatorname{Ker}(\phi))$. We get a map

$$\begin{array}{rcl} \gamma_{\phi} : \mathbb{K}[t_{1}^{\pm 1}, \dots, t_{m}^{\pm 1}] & \xrightarrow{\cong} & (\mathbb{K}[\operatorname{Ker}(\phi)])[s^{\pm 1}] \\ & \sum_{\alpha \in \mathbb{Z}^{m}} k_{\alpha} t^{\alpha} & \mapsto & \sum_{\alpha \in \mathbb{Z}^{m}} k_{\alpha} t^{\alpha} \mu^{-\phi(\alpha)/d} \, s^{\phi(\alpha)/d} \end{array}$$

where $k_{\alpha} \in \mathbb{K}$ for all $\alpha \in \mathbb{Z}^m$. Note that $k_{\alpha}t^{\alpha}\mu^{-\phi(\alpha)/d} \in \mathbb{K}[\operatorname{Ker}(\phi)]$. An easy computation shows that γ_{ϕ} is an isomorphism of rings. Clearly we also get an induced isomorphism $\mathbb{K}(t_1, \ldots, t_m) \xrightarrow{\cong} (\mathbb{K}(\operatorname{Ker}(\phi)))(s)$.

Let B a matrix over $\mathbb{K}(t_1, \ldots, t_m)$. Define $\deg_{\phi}(B) := \deg(\det(\gamma_{\phi}(B)))$ where we view $\gamma(B)$ as a matrix over $\mathbb{K}(\operatorname{Ker}(\phi))(s)$.

Theorem 2.3. Let B a matrix over $\mathbb{K}(t_1, \ldots, t_m)$. Let $\phi \in Hom(\mathbb{Z}^m, \mathbb{Z})$ non-trivial and let $d \in \mathbb{N}$ such that $Im(\phi) = d\mathbb{Z}$. Then

$$||\phi||_B = d \max\{0, deg_{\phi}(B)\}$$

Note that this shows in particular that $\deg_{\phi}(B)$ is independent of the choice of β . This theorem is a generalization of [Ha05, Proposition 5.12] to the non-commutative case.

Proof. Since γ and deg are homomorphisms it is clearly enough to show that for any $g \in \mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}] \setminus \{0\}$ we have

$$||\phi||_g = d \deg(\gamma_\phi(g)).$$

Write $g = \sum_{\alpha \in \mathbb{Z}^m} a_{\alpha} t^{\alpha}$ with $a_{\alpha} \in \mathbb{K}$. Let d, β, μ and $\gamma : \mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}] \xrightarrow{\cong} (\mathbb{K}[\operatorname{Ker}(\phi)])[s^{\pm 1}]$ as above. Note that $\operatorname{Ker}(\phi) \oplus \mathbb{Z}\beta = \mathbb{Z}^m$, hence

$$g = \sum_{i \in \mathbb{Z}} \sum_{\alpha \in Ker(\phi)} a_{\alpha+i\beta} t^{\alpha+i\beta},$$

$$\gamma_{\phi}(g) = \sum_{i \in \mathbb{Z}} \left(\sum_{\alpha \in Ker(\phi)} a_{\alpha+i\beta} t^{\alpha+i\beta} \mu^{-i} \right) s^{i}.$$

Note that $a_{\alpha+i\beta}t^{\alpha+i\beta}\mu^{-i} \subset \mathbb{K}t^{\alpha}$. Since $\mathbb{K}[\operatorname{Ker}(\phi)] = \bigoplus_{\alpha \in Ker(\phi)} \mathbb{K}t^{\alpha}$ we get the following equivalences:

$$\sum_{\alpha \in Ker(\phi)} a_{\alpha+i\beta} t^{\alpha+i\beta} \mu^{-i} = 0$$

$$\Leftrightarrow \qquad a_{\alpha+i\beta} t^{\alpha+i\beta} \mu^{-i} = 0 \quad \text{for all } \alpha \in \text{Ker}(\phi)$$

$$\Leftrightarrow \qquad a_{\alpha+i\beta} = 0 \quad \text{for all } \alpha \in \text{Ker}(\phi)$$

Therefore

$$\begin{aligned} ||\phi||_g &= d \max_{i \in \mathbb{Z}} \{ \text{there exists } \alpha \in \text{Ker}(\phi) \text{ such that } a_{\alpha+i\beta} \neq 0 \} \\ &- d \min_{i \in \mathbb{Z}} \{ \text{there exists } \alpha \in \text{Ker}(\phi) \text{ such that } a_{\alpha+i\beta} \neq 0 \} \\ &= d \max_{i \in \mathbb{Z}} \{ \sum_{\alpha \in ker(\phi)} a_{\alpha+i\beta} t^{\alpha+i\beta} \mu^{-i} \neq 0 \} \\ &- d \min_{i \in \mathbb{Z}} \{ \sum_{\alpha \in ker(\phi)} a_{\alpha+i\beta} t^{\alpha+i\beta} \mu^{-i} \neq 0 \} \\ &= d \operatorname{deg}(\gamma_{\phi}(g)). \end{aligned}$$

2.4. Proof of Proposition 2.1. We start out with the following basic lemma.

Lemma 2.4. Let $f, g \in \mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}] \setminus \{0\}$, then $||_{-}||_{fg} = ||_{-}||_{f} + ||_{-}||_{g}$.

This lemma is well-known. It follows from the fact that the Newton polytope of non-commutative multivariable polynomials fg is the Minkowski sum of the Newton polytopes of f and g.

Lemma 2.5. Let $d \in \mathbb{K}(t_1, \ldots, t_m)$ and let $f_n, f_d, g_n, g_d \in \mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ such that $d = f_n f_d^{-1} = g_n g_d^{-1} \in \mathbb{K}(t_1, \ldots, t_m)$. Then

$$||_{-}||_{f_n} - ||_{-}||_{f_d} = ||_{-}||_{g_n} - ||_{-}||_{g_d}$$

In particular

$$||_{-}||_{d} := ||_{-}||_{f_{n}} - ||_{-}||_{f_{d}}$$

is well-defined.

Proof. Recall that by the definition of the Ore localization $f_n f_d^{-1} = g_n g_d^{-1} \in \mathbb{K}(t_1, \ldots, t_m)$ is equivalent to the existence of $u, v \in \mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}] \setminus \{0\}$ such that $f_n u = g_n v$ and $f_d u = g_d v$. The lemma now follows immediately from Lemma 2.4.

Lemma 2.6. Let $d, e \in \mathbb{K}(t_1, \ldots, t_m)$, then

$$||_{-}||_{de} = ||_{-}||_{d} + ||_{-}||_{e}.$$

Proof. Pick $f_n, f_d, g_n, g_d \in \mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ such that $f_n f_d^{-1} = d$ and $g_n g_d^{-1} = e$. By the Ore property there exist $u, v \in \mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}] \setminus \{0\}$ such that $g_n u = f_d v$. It follows that

$$f_n f_d^{-1} g_n g_d^{-1} = f_n v u^{-1} g_d^{-1} = (f_n v) (g_d u)^{-1}.$$

The lemma now follows immediately from Lemma 2.4.

We can now give the proof of Proposition 2.1.

Proof of Proposition 2.1. Let B be a matrix defining an element $K_1(\mathbb{K}(t_1,\ldots,t_m))$. Assume that we have $f_n, f_d, g_n, g_d \in \mathbb{K}[t_1^{\pm 1},\ldots,t_m^{\pm 1}]$ such that $\det(B) = f_n f_d^{-1} = g_n g_d^{-1} \in \mathbb{K}(t_1,\ldots,t_m)_{ab}^{\times}$. We can lift the equality $f_n f_d^{-1} = g_n g_d^{-1} \in \mathbb{K}(t_1,\ldots,t_m)_{ab}^{\times}$ to an equality

(1)
$$f_n f_d^{-1} = \prod_{i=1}^r [a_i, b_i] g_n g_d^{-1} \in \mathbb{K}(t_1, \dots, t_m)^{\times}$$

for some $a_i, b_i \in \mathbb{K}(t_1, \dots, t_m)$. It follows from Lemma 2.6 that $||_{-}||_{[a_i, b_i]} = 0$. It then follows from Lemma 2.6 that $||_{-}||_{f_n f_d^{-1}} = ||_{-}||_{g_n g_d^{-1}}$.

2.5. **Proof of Theorem 2.2.** Now let $\tau \in K_1(\mathbb{K}(t_1, \ldots, t_m))$ which can be represented by a matrix *B* defined over $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$. We will show that $||_{-}||_{\tau} = ||_{-}||_{B}$ defines a seminorm on $\operatorname{Hom}(\mathbb{R}^m, \mathbb{R})$.

Because of the continuity and the \mathbb{N} -linearity of $||_{-}||_{B}$ it is enough to show that for any two non-trivial homomorphisms $\phi, \tilde{\phi} : \mathbb{Z}^{m} \to \mathbb{Z}$ we have

$$||\phi + \tilde{\phi}||_B \le ||\phi||_B + ||\tilde{\phi}||_B.$$

Let $\phi, \tilde{\phi} : \mathbb{Z}^m \to \mathbb{Z}$ be non-trivial homomorphisms. Let $d \in \mathbb{Z}$ such that $\operatorname{Im}(\phi) = d\mathbb{Z}$ and pick β with $\phi(\beta) = d$. We write $\mu = t^{\beta}$. As in Section 2.3 we can form $\mathbb{K}[\operatorname{Ker}(\phi)]$ and we also have an isomorphism $\gamma_{\phi} : \mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}] \xrightarrow{\cong} (\mathbb{K}[\operatorname{Ker}(\phi)])[s^{\pm 1}]$. Consider $\gamma_{\phi}(B)$, it is defined over the PID $\mathbb{K}(\operatorname{Ker}(\phi))[s^{\pm 1}]$. Therefore we can

Consider $\gamma_{\phi}(B)$, it is defined over the PID $\mathbb{K}(\operatorname{Ker}(\phi))[s^{\pm 1}]$. Therefore we can use elementary row operations to turn $\gamma_{\phi}(B)$ into a diagonal matrix with entries in $\mathbb{K}(\operatorname{Ker}(\phi))[s^{\pm 1}]$. In particular we can find $a_i, b_i \in \mathbb{K}[\operatorname{Ker}(\phi)]$ such that

$$\det(\gamma_{\phi}(B)) = \sum_{i=r_1}^{r_2} s^i a_i b_i^{-1}$$

Since $\mathbb{K}[\operatorname{Ker}(\phi)]$ is an Ore domain we can in fact find a common denominator for $a_i b_i^{-1}, i = r_1, \ldots, r_2$. More precisely, we can find $c_{r_1}, \ldots, c_{r_2} \in \mathbb{K}[\operatorname{Ker}(\phi)]$ and $d \in \mathbb{K}[\operatorname{Ker}(\phi)]$ such that $a_i b_i^{-1} = c_i d^{-1}$ for $i = r_1, \ldots, r_2$. Now let $c = \sum_{i=r_1}^{r_2} s^i c_i$. Then

$$\det(\gamma_{\phi}(B)) = cd^{-1} \in \mathbb{K}(\mathrm{Ker}(\phi))(s)_{ab}^{\times}$$

where $c \in \mathbb{K}[\operatorname{Ker}(\phi)][s^{\pm 1}]$ and $d \in \mathbb{K}[\operatorname{Ker}(\phi)]$. Now let $f = \gamma_{\phi}^{-1}(c) \in \mathbb{K}[t_1^{\pm 1}, \dots, t_m^{\pm 1}], g = \gamma_{\phi}^{-1}(d) \in \mathbb{K}[\operatorname{Ker}(\phi)]$. Then $\det(B) = fg^{-1}$ and by Proposition 2.1 we have

$$||_{-}||_{B} = ||_{-}||_{f} - ||_{-}||_{g}$$

The crucial observation is that $||\phi||_g = 0$ and $||\phi + \tilde{\phi}||_g = ||\tilde{\phi}||_g$ since $g \in \mathbb{K}[\operatorname{Ker}(\phi)]$. It therefore now follows that

$$\begin{split} ||\phi + \tilde{\phi}||_{B} &= ||\phi + \tilde{\phi}||_{f} - ||\phi + \tilde{\phi}||_{g} \\ &= ||\phi + \tilde{\phi}||_{f} - ||\tilde{\phi}||_{g} \\ &\leq ||\phi||_{f} + ||\tilde{\phi}||_{f} - ||\tilde{\phi}||_{g} \\ &= (||\phi||_{f} - ||\phi||_{g}) + (||\tilde{\phi}||_{f} - ||\tilde{\phi}||_{g}) \\ &= ||\phi||_{B} + ||\tilde{\phi}||_{B}. \end{split}$$

This concludes the proof of Theorem 2.2.

3. Applications to the Thurston Norm

3.1. Reidemeister torsion. Let X be a finite connected CW-complex. Denote the universal cover of X by \tilde{X} . We view $C_*(\tilde{X})$ as a right $\mathbb{Z}[\pi_1(X)]$ -module via deck transformations. Let R be a ring. Let $\varphi : \pi_1(X) \to \operatorname{GL}(R,d)$ be a representation, this equips R^d with a left $\mathbb{Z}[\pi_1(X)]$ -module structure. We can therefore consider the right R-module chain complex $C^{\varphi}_*(X; R^d) := C_*(\tilde{X}) \otimes_{\mathbb{Z}[\pi_1(X)]} R^d$. We denote its homology by $H_i^{\varphi}(X; R^d)$. If $H^{\varphi}_*(X; R^d) \neq 0$, then we write $\tau(X, \varphi) := 0$. Otherwise we can define the Reidemeister torsion $\tau(X, \varphi) \in K_1(R)/\pm \varphi(\pi_1(X))$. If the homomorphism φ is clear we also write $\tau(X, R^d)$.

Let M be a manifold. Since Reidemeister torsion only depends on the homeomorphism type of the space we can define $\tau(M, \varphi)$ by picking any CW-structure for M. We refer to the excellent book of Turaev [Tu01] for filling in the details.

3.2. Compatible homomorphisms and the higher order Alexander norm. In the following let M be a 3-manifold with empty or toroidal boundary, let ψ : $H_1(M) \to \mathbb{Z}^m$ be an epimorphism, and let $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ be a multivariable skew Laurent polynomial ring of rank m as in Section 2.1.

Laurent polynomial ring of rank m as in Section 2.1. A representation $\varphi : \pi_1(M) \to \operatorname{GL}(\mathbb{K}[t_1^{\pm 1}, \dots, t_m^{\pm 1}], d)$ is called ψ -compatible if for any $g \in \pi_1(X)$ we have $\varphi(g) = At^{\psi(g)}$ for some $A \in \operatorname{GL}(\mathbb{K}, d)$. This generalizes definitions in [Tu02b] and [Fr05]. We denote the induced representation $\pi_1(M) \to$ $\operatorname{GL}(\mathbb{K}(t_1, \dots, t_m), d)$ by φ as well and we consider the corresponding Reidemeister torsion $\tau(M, \varphi) \in K_1(\mathbb{K}(t_1, \dots, t_m))/\pm \varphi(\pi_1(M)) \cup \{0\}.$

We say φ is a commutative representation if there exists a commutative subfield \mathbb{F} of \mathbb{K} such that for all g we have $\varphi(g) = At^{\psi(g)}$ with A defined over \mathbb{F} and if $t^{\alpha}, t^{\tilde{\alpha}}$ commute for any $\alpha, \tilde{\alpha} \in \mathbb{Z}^m$.

Theorem 3.1. Let M be a 3-manifold with empty or toroidal boundary. Let ψ : $H_1(M) \to \mathbb{Z}^m$ be an epimorphism. Let $\varphi : \pi_1(M) \to GL(\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}], d)$ be a ψ -compatible representation such that $\tau(M, \varphi) \neq 0$. If one of the following holds:

- (1) φ is commutative,
- (2) there exists $g \in Ker\{\pi_1(M) \to \mathbb{Z}^m\}$ such that $\varphi(g) id$ is invertible over \mathbb{K} ,

then $||_{-}||_{\tau(M,\varphi)}$ is a seminorm on $Hom(\mathbb{R}^m,\mathbb{R})$ and for any $\phi:\mathbb{R}^m\to\mathbb{R}$ we have $||\phi\circ\psi||_T>||\phi||_{\tau(M,\varphi)}.$

We point out that if $g \in \operatorname{Ker} \{\pi_1(M) \to \mathbb{Z}^m\}$, then $\varphi(g)$ – id is defined over \mathbb{K} since φ is ψ -compatible. We refer to $||_{\tau(M,\varphi)}$ as the higher-order Alexander norm.

In the case that $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ equals $\mathbb{Q}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$, the usual commutative Laurent polynomial ring, we recover McMullen's Alexander norm $||_{-}||_A$ (cf. [Mc02]). The general commutative case is the main result in [FK05b]. The proof we give here is different in its nature from the proofs in [Mc02] and [FK05b].

Proof. In the case that m = 1 it is clear that $||_{-}||_{\tau(M,\varphi)}$ is a seminorm. The fact that it gives a lower bound on the Thurston norm was shown in [Co04, Ha05, Tu02b, Fr05]. We therefore assume now that m > 1.

We first show that $||\phi \circ \psi||_T \geq ||\phi||_{\tau(M,\varphi)}$ for any $\phi : \mathbb{R}^m \to \mathbb{R}$. Since both sides are \mathbb{N} -linear and continuous we only have to show that $||\phi \circ \psi||_T \geq ||\phi||_{\tau(M,\varphi)}$ for all epimorphisms $\phi : \mathbb{Z}^m \to \mathbb{Z}$. So let $\phi : \mathbb{Z}^m \to \mathbb{Z}$ be an epimorphism.

Pick $\mu \in \mathbb{Z}^m$ with $\phi(\mu) = 1$ as in the definition of $\deg_{\phi}(\tau(M, \varphi))$. We can then again form the rings $\mathbb{K}[\operatorname{Ker}(\phi)][s^{\pm 1}]$ and $\mathbb{K}(\operatorname{Ker}(\phi))(s)$. First note that by Theorem 2.3

$$||\phi||_{\tau(M,\varphi)} = \deg_{\phi}(\tau(M,\varphi))$$

since ϕ is surjective. The representation

 $\pi_1(M) \to \operatorname{GL}(\mathbb{K}[t_1^{\pm 1}, \dots, t_m^{\pm 1}], d) \to \operatorname{GL}(\mathbb{K}(\operatorname{Ker}(\phi))[s^{\pm 1}], d)$

is ϕ -compatible since $\pi_1(M) \to \operatorname{GL}(\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}], d)$ is ψ -compatible. It now follows from [Fr05, Theorem 1.2] that $||\phi \circ \psi||_T \ge \operatorname{deg}(\tau(M, \mathbb{K}(\operatorname{Ker}(\phi))(s))) = \operatorname{deg}_{\phi}(\tau(M, \varphi))$ (cf. also [Tu02b]).

In the remainder of the proof we will show that if m > 1 then the Reidemeister torsion $\tau(M, \varphi) \in K_1(\mathbb{K}(t_1, \ldots, t_m)) / \pm \varphi(\pi_1(M))$ can be represented by a matrix defined over $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$. It then follows from Theorem 2.2 that $||_{-}||_{\tau(M,\varphi)}$ is a seminorm.

First consider the case that φ is a commutative representation. Let \mathbb{F} be the commutative subfield \mathbb{F} in the definition of a commutative representation. Denote by $\mathbb{F}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ the ordinary Laurent polynomial ring. Then we have ψ -compatible representations $\pi_1(M) \to \operatorname{GL}(\mathbb{F}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}], d) \hookrightarrow \operatorname{GL}(\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}], d)$. By [Tu01, Proposition 3.6] we have

$$\tau(M, \mathbb{F}(t_1, \dots, t_m)) = \tau(M, \mathbb{K}(t_1, \dots, t_m)) \in K_1(\mathbb{K}(t_1, \dots, t_m)) / \pm \varphi(\pi_1(M)).$$

Since m > 1 it follows from [Tu01, Theorem 4.7] combined with [FK05b, Lemmas 6.2 and 6.5] that $\det(\tau(M, \mathbb{F}(t_1, \ldots, t_m))) \in \mathbb{F}(t_1, \ldots, t_m)$ equals the twisted multivariable Alexander polynomial, in particular it is defined over $\mathbb{F}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$. This concludes the proof in the commutative case.

It therefore remains to consider the case that there exists $g \in \text{Ker}\{G \to \mathbb{Z}^m\}$ such that $\varphi(g)$ – id is invertible. We first consider the case that M is a closed 3-manifold.

Let h = g. Now pick a Heegard decomposition $M = G_0 \cup H_0$. We can add a handle to G_0 in $M \setminus G_0$ so that the core represents g. Adding further handles in $M \setminus G_0$ we can assume that the complement is again a handlebody. We call the two handlebodies G_1 and H_1 .

Now we can add a handle to H_1 in $M \setminus G_1$ so that the core represents h. Adding further handles in $M \setminus H_1$ we can assume that the complement is again a handlebody. We call the two handlebodies G and H. Note that g is still represented by a handle of G. Now give M the CW structure as follows: Take one 0–cell, attach 1–cells along a choice of cores of G such that g corresponds to one 1–cell. Attach 2–cells along cocores of H such that one cocore corresponds to h. Finally attach one 3–cell.

Denote the number of 1–cells by n. Consider the chain complex of the universal cover \tilde{M} :

$$0 \to C_3(\tilde{M})^1 \xrightarrow{\partial_3} C_2(\tilde{M})^n \xrightarrow{\partial_2} C_1(\tilde{M})^n \xrightarrow{\partial_1} C_0(\tilde{M})^1 \to 0,$$

where the supscript indicates the rank over $\mathbb{Z}[\pi_1(M)]$. Picking appropriate lifts of the cells of M to cells of \tilde{M} and picking an appropriate order we get bases for the $\mathbb{Z}[\pi_1(M)]$ -modules $C_i(\tilde{M})$, such that if A_i denotes the matrix corresponding to ∂_i , then A_1 and A_3 are of the form

$$A_3 = (1 - g, 1 - g_2, \dots, 1 - g_n)^t, A_1 = (1 - h, 1 - h_2, \dots, 1 - h_n),$$

for some $g_i, h_i \in \pi_1(M), i = 2, ..., n$. By assumption $\operatorname{id} - \varphi(g)$ and $\operatorname{id} - \varphi(h)$ are invertible over \mathbb{K} . Denote by B_2 the result of deleting the first column and the first row of A_2 . Let $\tau := (\operatorname{id} - \varphi(g))^{-1}\varphi(B_2)(\operatorname{id} - \varphi(h))^{-1}$. Note that τ is defined over $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$. Since we assume that $\tau(M, \varphi) \neq 0$ it follows that $\varphi(B_2)$ is invertible over $\mathbb{K}(t_1, \ldots, t_m)$ and $\tau(M, \varphi) = \tau \in K_1(\mathbb{K}(t_1, \ldots, t_m))/\pm \varphi(\pi_1(M))$ (we refer to [Tu01, Theorem 2.2] for details). Therefore $\tau(M, \varphi) \in K_1(\mathbb{K}(t_1, \ldots, t_m))/\pm \varphi(\pi_1(M))$ can be represented by a matrix defined over $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$.

In the case that M is a 3-manifold with non-empty toroidal boundary we can find a (simple) homotopy equivalence to a 2-complex X with $\chi(X) = 0$. We can assume that the CW-structure has one 0-cell, n 1-cells and n - 1 2-cells, furthermore we can assume that one of the 1-cells represents an element $h \in \text{Ker}\{\psi : G \to \mathbb{Z}^m\}$ such that id $-\varphi(h)$ is invertible. We get a chain complex

$$0 \to C_2(\tilde{X})^{n-1} \xrightarrow{\partial_2} C_1(\tilde{X})^n \xrightarrow{\partial_1} C_0(\tilde{X})^1 \to 0.$$

Picking appropriate lifts of the cells of X to cells of \tilde{X} we get bases for the $\mathbb{Z}[\pi_1(X)]$ modules $C_i(\tilde{X})$, such that if A_i denotes the matrix corresponding to ∂_i , then A_1 is of the form

$$A_1 = (1-h, 1-h_2, \dots, 1-h_n), h_i \in \pi_1(M).$$

Now denote by B_2 the result of deleting the first row of A_2 . Then $\tau := \varphi(B_2)(\mathrm{id} - \varphi(h))^{-1}$ is again defined over $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ and the proof continues as in the case of a closed 3-manifold.

Remark. Note that if follows from [Fr05] that if M is closed, or if M has toroidal boundary, then $\tau(M, \varphi) \neq 0$ is equivalent to $H_1(M; \mathbb{K}(t_1, \ldots, t_m)) = 0$, or equivalently, that $H_1(M; \mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}])$ has rank zero over $\mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$.

Remark. Note that the computation of $f_d \in \mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ and $f_n \in \mathbb{K}[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ such that $\det(\tau(M, \varphi)) = f_n f_d^{-1}$ is computationally equivalent to the computation of $\deg_{\phi}(\tau(M, \varphi))$ for some $\phi : H_1(M) \to \mathbb{Z}$. Put differently we get the perhaps surprising fact that computing the higher-order Alexander norm does not take longer than computing a single higher-order one-variable Alexander polynomial.

4. Examples of ψ -compatible homomorphisms

4.1. Skew fields of group rings. A group G is called locally indicable if for every finitely generated subgroup $U \subset G$ there exists a non-trivial homomorphism $U \to \mathbb{Z}$.

Theorem 4.1. Let G be a locally indicable and amenable group and let R be a subring of \mathbb{C} . Then R[G] is an Ore domain, in particular it embeds in its classical right ring of quotients $\mathbb{K}(G)$.

It follows from [Hi40] that R[G] has no zero divisors. The theorem now follows from [Ta57] or [DLMSY03, Corollary 6.3].

A group G is called poly-torsion-free-abelian (PTFA) if there exists a filtration

$$1 = G_0 \subset G_1 \subset \cdots \subset G_{n-1} \subset G_n = G$$

such that G_i/G_{i-1} is torsion free abelian. It is well-known that PTFA groups are amenable and locally indicable (cf. [St74]). The group rings of PTFA groups played an important role in [COT03], [Co04] and [Ha05].

4.2. Admissible pairs and multivariable skew Laurent polynomial rings. We slightly generalize a definition from [Ha06].

Definition. Let π be a group and let $\psi : \pi \to \mathbb{Z}^m$ be an epimorphism and let $\varphi : \pi \to G$ be an epimorphism to a locally indicable and amenable group G such that there exists a map $G \to \mathbb{Z}^m$ (which we also denote by ψ) such that

commutes. Following [Ha06, Definition 1.4] we call (φ, ψ) an *admissible pair* for π .

Clearly $G_{\psi} := \operatorname{Ker} \{ G \to \mathbb{Z}^m \}$ is locally indicable and amenable. It follows now from [Pa85, Lemma 3.5 (ii), p. 609] that $(\mathbb{Z}[G], \mathbb{Z}[G_{\psi}] \setminus \{0\})$ satisfies the Ore property. Now pick elements $t^{\alpha} \in G, \alpha \in \mathbb{Z}^m$ such that $\psi(t^{\alpha}) = \alpha$ and $t^{n\alpha} = (t^{\alpha})^n$ for any $\alpha \in \mathbb{Z}^m, n \in \mathbb{Z}$. Clearly $\mathbb{Z}[G](\mathbb{Z}[G_{\psi}] \setminus \{0\})^{-1} = \sum_{\alpha \in \mathbb{Z}^m} \mathbb{K}(G_{\psi})t^{\alpha}$ is a multivariable skew Laurent polynomial ring of rank *m* over the field $\mathbb{K}(G_{\psi})$ as defined in Section 2.1. We denote this ring by $\mathbb{K}(G_{\psi})[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$. Note that $\mathbb{Z}[\pi] \to \mathbb{Z}[G] \to \mathbb{K}(G_{\psi})[t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ is a ψ -compatible homomorphism and that $\mathbb{K}(G_{\psi})(t_1, \ldots, t_m)$ is canonically isomorphic to $\mathbb{K}(G)$.

A family of examples of admissible pairs is provided by the rational derived series of a group π introduced by the second author (cf. [Ha05, Section 3]). Let $\pi_r^{(0)} := \pi$ and define inductively

$$\pi_r^{(n)} := \left\{ g \in \pi_r^{(n-1)} | \, g^d \in \left[\pi_r^{(n-1)}, \pi_r^{(n-1)} \right] \text{ for some } d \in \mathbb{Z} \setminus \{0\} \right\}.$$

Note that $\pi_r^{(n-1)}/\pi_r^{(n)} \cong (\pi_r^{(n-1)}/[\pi_r^{(n-1)},\pi_r^{(n-1)}])/\mathbb{Z}$ -torsion. By [Ha05, Corollary 3.6] the quotients $\pi/\pi_r^{(n)}$ are PTFA groups for any π and any n. If $\psi : \pi \to \mathbb{Z}^m$ is an epimorphism, then $(\pi \to \pi/\pi_r^{(n)}, \psi)$ is an admissible pair for π) for any n > 0.

4.3. Admissible pairs and seminorms. Let M be a 3-manifold with empty or toroidal boundary. Let $(\varphi : \pi_1(M) \to G, \psi : \pi_1(M) \to \mathbb{Z}^m)$ be an admissible pair for $\pi_1(M)$. We denote the induced map $\mathbb{Z}[\pi_1(M)] \to \mathbb{K}(G_{\psi})(t_1, \ldots, t_m)$ by φ as well.

Let $\phi : \mathbb{Z}^m \to \mathbb{Z}$ be a non-trivial homomorphism. We denote the induced homomorphism $G \to \mathbb{Z}^m \to \mathbb{Z}$ by ϕ as well. We write $G_{\phi} := \operatorname{Ker}\{G \to \mathbb{Z}\}$. Pick $\mu \in G$ such that $\phi(\mu)\mathbb{Z} = \operatorname{Im}(\phi)$. We define $\mathbb{Z}[G_{\phi}][u^{\pm 1}]$ via $uf = \mu f \mu^{-1} u$. Note that we get an isomorphism $\mathbb{K}(G_{\phi})(u) \cong \mathbb{K}(G)$. If $\tau(M, \varphi) \neq 0$, then we define

$$\delta_G(\phi) := \max\{0, \deg(\tau(M, \mathbb{K}(G_\phi)(u)))\}$$

otherwise we write $\delta_G(\phi) = -\infty$. We will adopt the convention that $-\infty < a$ for any $a \in \mathbb{Z}$. By [Fr05] this agrees with the definition in [Ha06, Definition 1.6] if $\delta_G(\phi) \neq -\infty$ and if $\varphi: G \to \mathbb{Z}^m$ is not an isomorphism or if m > 1. In the case that $\varphi: G \to \mathbb{Z}$ is an isomorphism and $M \neq S^1 \times D^2, S^1 \times S^2$, this definition differs from [Ha06, Definition 1.6] by the term $1 + b_3(M)$. In the case that $\varphi: \pi \to \pi/\pi_r^{(n+1)}$ then we also write $\delta_n(\phi) = \delta_{\pi/\pi_r^{(n+1)}}(\phi)$.

Theorem 4.2. Let M be a 3-manifold with empty or toroidal boundary. Let $(\varphi : \pi_1(M) \to G, \psi : \pi_1(M) \to \mathbb{Z}^m)$ be an admissible pair for $\pi_1(M)$ such that $\tau(M, \varphi) \neq 0$. Then for any $\phi : \mathbb{Z}^m \to \mathbb{Z}$ we have

$$||\phi||_{\tau(M,\varphi)} = \delta_G(\phi),$$

and $\phi \mapsto \max\{0, \delta_G(\phi)\}$ defines a seminorm which is a lower bound on the Thurston norm.

Note that this theorem implies in particular Theorem 1.1.

Proof. Let $\phi : \mathbb{Z}^m \to \mathbb{Z}$ be a non-trivial homomorphism. As in Section 2.1 we can form $\mathbb{K}(G_{\phi})[s^{\pm 1}]$ and $\mathbb{K}(G_{\psi})(\operatorname{Ker}(\phi))[s^{\pm 1}]$. Note that these rings are canonically isomorphic Laurent polynomial rings. If $\psi : G \to \mathbb{Z}^m$ is an isomorphism, then φ is commutative.

Otherwise we can find a non-trivial $g \in \text{Ker}(\psi)$, so clearly $1 - \varphi(g) \neq 0 \in \mathbb{K}(G)$. This shows that we can apply Theorem 3.1 which then concludes the proof. \Box

In the case that $\varphi : \pi \to \pi/\pi_r^{(n+1)}$ we denote the seminorm $\phi \mapsto \max\{0, \delta_n(\phi)\}$ by $||_{-}||_n$. Note that in the case n = 0 this was shown by the second author [Ha05, Proposition 5.12] to be equal to McMullen's Alexander norm [Mc02].

4.4. Admissible triple. We now slightly extend a definition from [Ha06].

Definition. Let π be a group and $\psi: \pi \to \mathbb{Z}^m$ an epimorphism. Furthermore let $\varphi_1: \pi \to G_1$ and $\varphi_2: \pi \to G_2$ be epimorphisms to locally indicable and amenable groups G_1 and G_2 . We call $(\varphi_1, \varphi_2, \psi)$ an admissible triple for π if there exist epimorphisms $\Phi: G_1 \to G_2$ and $\psi_2: G_2 \to \mathbb{Z}^m$ such that $\varphi_2 = \Phi \circ \varphi_1$, and $\psi = \psi_2 \circ \varphi_2$.

Note that in particular $(\varphi_i, \psi), i = 1, 2$ are admissible pairs for π . Combining Theorem 4.2 with [Fr05, Theorem 1.3] (cf. also [Ha06]) we get the following result.

Theorem 4.3. Let M be a 3-manifold with empty or toroidal boundary. If $(\varphi_1, \varphi_2, \psi)$ is an admissible triple for $\pi_1(M)$ such that $\tau(M, \varphi_2) \neq 0$, then we have the following inequalities of seminorms:

$$||_{-}||_{\tau(M,\varphi_2)} \leq ||_{-}||_{\tau(M,\varphi_1)} \leq ||_{-}||_{T}.$$

In particular we have

$$||_{-}||_{0} \leq ||_{-}||_{1} \leq \cdots \leq ||_{-}||_{T}.$$

Let M be a 3-manifold with empty or toroidal boundary and let $\phi \in H^1(M; \mathbb{Z})$. Since $\delta_n(\phi) \in \mathbb{N}$ for all n it follows immediately from Theorem 4.3 that there exists $N \in \mathbb{N}$ such that $\delta_n(\phi) = \delta_N(\phi)$ for all $n \geq N$. But we can in fact prove a slightly stronger statement, namely that there exists such an N independent of the choice of $\phi \in H^1(M; \mathbb{Z})$.

Proposition 4.4. Let M be a 3-manifold with empty or toroidal boundary. There exists $N \in \mathbb{N}$ such that $\delta_n(\phi) = \delta_N(\phi)$ for all $n \ge N$ and all $\phi \in H^1(M; \mathbb{R})$.

Proof. Write $\pi = \pi_1(M), \pi_n = \pi/\pi_r^{(n+1)}$ and $m = b_1(M)$. Let $\psi : \pi \to \mathbb{Z}^m$ be an epimorphism. Write $(\pi_n)_{\psi} = \operatorname{Ker}\{\psi : \pi_n \to \mathbb{Z}^m\}$. Now pick elements $t^{\alpha} \in \pi_n, \alpha \in \mathbb{Z}^m$ such that $\psi(t^{\alpha}) = \alpha$ and $t^{k\alpha} = (t^{\alpha})^k$ for any $\alpha \in \mathbb{Z}^m, k \in \mathbb{Z}$. Consider the map $\mathbb{Z}[\pi] \to \mathbb{Z}[\pi_n] \to \mathbb{K}((\pi_n)_{\psi})(t_1, \ldots, t_m)$. We write $\tau_n = \tau(M, \mathbb{K}((\pi_n)_{\psi})(t_1, \ldots, t_m))$. We can find $f_n, g_n \in \mathbb{K}((\pi_n)_{\psi}) \in [t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ such that $\tau_n = f_n g_n^{-1}$.

Given a seminorm s on $H^1(N; \mathbb{R})$ whose normball is a (possibly non-compact) polygon we can study its dual polytope d(s). Note that given $f = \sum_{\alpha \in \mathbb{Z}^m} a_\alpha t^\alpha \in \mathbb{K}((\pi_n)_{\psi}) \in [t_1^{\pm 1}, \ldots, t_m^{\pm 1}]$ the dual polytope $d(||_-||_f)$ equals the Newton polygon N(f)which is the convex hull of $\{\alpha | a_\alpha \neq 0\}$. Clearly $d(||_-||_f)$ has only integral vertices.

By the definition of $\delta_n = ||_{-}||_{\tau_n} = ||_{-}||_{f_a q_n^{-1}}$ it follows that

$$d(\delta_n) + d(g_n) = d(\tau_n) + d(g_n) = d(f_n)$$

where "+" denotes the Minkowski sum of convex sets. It is easy to see that this implies that $d(\delta_n)$ has only integral vertices.

Theorem 4.3 implies that there is a sequence of inclusions

$$d(\delta_0) \subset d(\delta_1) \subset \cdots \subset d(||_-||_T).$$

Since $d(||_{-}||_{T})$ is compact and since $d(\delta_{n})$ has integral vertices for all n it follows immediately that there exists $N \in \mathbb{N}$ such that $d(\delta_{n}) = d(\delta_{N})$ for all $n \geq N$. This completes the proof of the proposition.

5. Examples

Before we discuss the Thurston norm of a family of links we first need to introduce some notation for knots. Let K be a knot. We denote the knot complement by X(K). Let $\phi : H_1(X(K)) \to \mathbb{Z}$ be an isomorphism. We write $\delta_n(K) := \delta_n(\phi)$. This agree with the original definition of Cochran [Co04] for n > 0 and if $\Delta_K(t) = 1$, and it is one less than Cochran's definition otherwise.

In the following let $L = L_1 \cup \cdots \cup L_m$ be any ordered oriented *m*-component link. Let $i \in \{1, \ldots, m\}$. Let *K* be an oriented knot with $\Delta_K(t) \neq 1$ which is separated from *L* by a sphere *S*. We pick a path from a point on *K* to a point on L_i and denote by $L \#_i K$ the link given by performing the connected sum of L_i with *K* (cf. Figure 1). Note that this connected sum is well-defined, i.e. independent of the choice of the path. We will study the Thurston norm of $L \#_i K$.

FIGURE 1. The link $L\#_i K$.

Now assume that L is a non–split link with at least two components and such that $||_{-}||_{0} = ||_{-}||_{T}$. Many examples of such links are known (cf. [Mc02]). For the link $L\#_{i}K$ denote its meridians by $\mu_{i}, i = 1, \ldots, m$. Let $\psi : H_{1}(X(L\#_{i}K)) \to \mathbb{Z}^{m}$ be the isomorphism given by $\psi(\mu_{i}) = e_{i}$, where e_{i} is the *i*-th vector of the standard basis of \mathbb{Z}^{m} .

We write $\pi := \pi_1(X(L\#_iK))$. For all $\alpha \in \mathbb{Z}^m$ we pick $t^{\alpha} \in \pi/\pi_r^{(n+1)}$ with $\psi(t^{\alpha}) = \alpha$ and such that $t^{l\alpha} = (t^{\alpha})^l$ for all $\alpha \in \mathbb{Z}^m$ and $l \in \mathbb{Z}$. Furthermore write $t_i := t^{e_i}$. **Proposition 5.1.** Consider the natural map

$$\varphi: \pi \to \mathbb{K}(\pi/\pi_r^{(n+1)}) = \mathbb{K}(\pi_{\psi}/\pi_r^{(n+1)})(t_1, \dots, t_m).$$

where π is as defined above. There exists an element $f(t_i) \in \mathbb{K}(\pi_{\psi}/\pi_r^{(n+1)})[t_i^{\pm 1}] \subset \mathbb{K}(\pi_{\psi}/\pi_r^{(n+1)})[t_1^{\pm 1},\ldots,t_m^{\pm 1}]$ such that $deg(f(t_i)) = \delta_n(K) + 1$, and there exists a $d = d(t_1,\ldots,t_m) \in \mathbb{K}(t_1,\ldots,t_m)$ with $||_{-}||_d = ||_{-}||_0$, such that

(2)
$$\tau(X(L\#_iK),\varphi) = d(t_1,\ldots,t_m)f(t_i) \in K_1(\mathbb{K}(\pi_{\psi}/\pi_r^{(n+1)})(t_1,\ldots,t_m))/\pm\varphi(\pi)$$

Furthermore, if $\delta_n(K) = 2genus(K) - 1$, then

$$||_{-}||_{\tau(X(L\#_iK),\varphi)} = ||_{-}||_T.$$

Proof. Let S be the embedded sphere in S^3 coming from the definition of the connected sum operation (cf. Figure 1). Let D be the annulus $S \cap X(L\#_iK)$ and we denote by P the closure of the component of $X(L\#_iK) \setminus D$ corresponding to K. We denote the closure of the other component by P' (see Figure 2 below). Note that P is homeomorphic to X(K) and P' is homeomorphic to X(L). Denote the induced maps

FIGURE 2. The link complement of $L\#_i K$ cut along the annulus D.

to
$$(K) := \mathbb{K}(\pi_{\psi}/\pi_r^{(n+1)})(t_1, \dots, t_m)$$
 by φ as well. We get an exact sequence
 $0 \to C^{\varphi}_*(D; (K)) \to C^{\varphi}_*(P; (K)) \oplus C^{\varphi}_*(P'; (K)) \to C^{\varphi}_*(X(L\#_iK); (K)) \to 0$

of chain complexes. It follows from [Tu01, Theorem 3.4] that

(3)
$$\tau(P,\varphi)\tau(P',\varphi) = \tau(D,\varphi)\tau(X(L_i\#K),\varphi) \in (K_1((K))/\pm\varphi(\pi)) \cup \{0\}.$$

First note that D is homotopy equivalent to a circle and that $\operatorname{Im}\{\psi: \pi_1(D) \to \mathbb{Z}^m\} = \mathbb{Z}e_i$. It is now easy to see that $\tau(D, \varphi) = (1 - at_i)^{-1}$ for some $a \in \mathbb{K}(\pi_{\psi}/\pi_r^{(n+1)}) \setminus \{0\}$. Next note that $\operatorname{Im}\{\psi: \pi_1(P) \to \mathbb{Z}^m\} = \mathbb{Z}e_i$. In particular $\tau(P, \varphi)$ is defined over the

Next note that $\operatorname{Im}\{\psi: \pi_1(P) \to \mathbb{Z}^m\} = \mathbb{Z}e_i$. In particular $\tau(P, \varphi)$ is defined over the one-variable Laurent polynomial ring $\mathbb{K}(\pi_{\psi}/\pi_r^{(n+1)})[t_i^{\pm 1}]$ which is a PID. Recall that we can therefore assume that its Dieudonné determinant $f(t_i)$ lies in $\mathbb{K}(\pi_{\psi}/\pi_r^{(n+1)})[t_i^{\pm 1}]$ as well.

Claim.

$$\deg(\tau(P,\varphi:\pi_1(P)\to\mathbb{K}(\pi_\psi/\pi_r^{(n+1)})(t_i))=\delta_n(K).$$

First recall that there exists a homeomorphism $P \cong X(K)$. We also have an inclusion $X(L\#_iK) \to X(L_i\#K)$. Combining with the degree one map $X(L_i\#K) \to X(K)$ we get a factorization of an automorphism of $\pi_1(X(K))$ as follows:

$$\pi_1(X(K)) \cong \pi_1(P) \to \pi_1(X(L\#_iK)) \to \pi_1(X(L_i\#K)) \to \pi_1(X(K)).$$

Since the rational derived series is functorial (cf. [Ha05]) we in fact get that

$$\pi_1(X(K))/\pi_1(X(K))_r^{(n+1)} \cong \pi_1(P)/\pi_1(P)_r^{(n+1)} \to \pi_1(X(L_i \# K))/\pi_1(X(L_i \# K))_r^{(n+1)} \to \pi_1(X(K))/\pi_1(X(K))_r^{(n+1)}$$

is an isomorphism. In particular

$$\pi_1(X(K))/\pi_1(X(K))_r^{(n+1)} \to \pi_1(X(L\#_iK))/\pi_1(X(L\#_iK))_r^{(n+1)})$$

is injective, and the induced map on Ore localizations is injective as well. Finally note that $\operatorname{Ker}\{\pi_1(X(K)) \to \pi_1(P) \xrightarrow{\psi} \mathbb{Z}^m\} = \operatorname{Ker}(\phi)$ where $\phi : \pi_1(X(K)) \to \mathbb{Z}$ is the abelianization map. It now follows that

$$\delta_n(K) = \deg(\tau(X(K), \pi_1(X(K))) \to \mathbb{K}(\pi_1(X(K))_{\phi}/\pi_1(X(K))_r^{(n+1)})(t_i)) \\ = \deg(\tau(X(K), \pi_1(X(K))) \to \mathbb{K}(\pi_{\psi}/\pi_r^{(n+1)})(t_i)) \\ = \deg(\tau(P, \pi_1(P)) \to \mathbb{K}(\pi_{\psi}/\pi_r^{(n+1)})(t_i)).$$

Note that the second equality follows from the functoriality of torsion (cf. [Tu01, Proposition 3.6]) and the fact that going to a supfield does not change the degree of a rational function. This concludes the proof of the claim.

Claim. We have the following equality of norms on $H^1(X(L);\mathbb{Z})$:

$$||_{-}||_{\tau(P',\varphi)} = ||_{-}||_{T}.$$

First recall that P' is homeomorphic to X(L). The claim now follows immediately from Theorem 4.3 applied to φ and to the abelianization map of $\pi_1(P')$, and from the assumption that $||_{-}||_0 = ||_{-}||_T$ on $H^1(X(L);\mathbb{Z})$.

Putting these computations together and using Equation (3) we now get a proof of Equation (2).

Now assume that $\delta_n(K) = 2\text{genus}(K) - 1$. Let S_i be a Seifert surface of K with minimal genus. Let $\phi : \mathbb{Z}^m \to \mathbb{Z}$ be an epimorphism and let $l = \phi(\mu_i) \in \mathbb{Z}$. We first view ϕ as an element in $\text{Hom}(H_1(X(L);\mathbb{Z}))$. A standard argument shows that ϕ is dual to a (possibly disconnected) surface S which intersects the tubular neighborhood of L_i in exactly l disjoint curves. Then the connected sum S' of S with lcopies of S_i gives a surface in $X(L\#_iK)$ which is dual to ϕ viewed as an element in $\text{Hom}(H_1(X(L\#_iK);\mathbb{Z}))$. A standard argument shows that S' is Thurston norm minimizing (cf. e.g. [Lic97, p. 18]).

16

Clearly $\chi(S') = \chi(S) + l(\chi(S_i) - 1)$. A straightforward argument shows that furthermore $\chi_{-}(S') = \chi_{-}(S) + l(\chi_{-}(S_i) + 1)$ since L is not a split link and since K is non-trivial.

We now compute

$$||\phi||_{T} = \chi_{-}(S')$$

= $\chi_{-}(S) - n(\chi(S_{i}) - 1)$
= $||\phi||_{T} + 2lgenus(K)$
= $||\phi||_{d} + 2(\delta_{n}(K) + 1)$
= $||\phi||_{d} + 2deg(f(t_{i}))$
= $||\phi||_{\tau(X(L\#_{i}K),\varphi)}.$

By the \mathbb{R} -linearity and the continuity of the norms it follows that

$$||\phi||_{\tau(X(L\#_iK),\varphi)} = ||\phi||_T$$

for all $\phi : \mathbb{Z}^m \to \mathbb{R}$.

Denote by $\Diamond(n,m)$ the convex polytope given by the vertices $(\pm \frac{1}{n}, 0)$ and $(0, \pm \frac{1}{m})$. Let $(n_i)_{i \in \mathbb{N}}$ and $(m_i)_{i \in \mathbb{N}}$ be never decreasing sequences of odd positive numbers which are eventually constant, i.e. there exists an N such that $n_i = n_N$ for all $i \ge N$ and $m_i = m_N$ for all $i \ge N$. According to [Co04] we can find knots K_1 and K_2 such that $\delta_i(K_1) = n_i$ for any $i, \delta_N(K_1) = 2 \operatorname{genus}(K_1) - 1$ and $\delta_i(K_2) = m_i$ for any i and $\delta_N(K_2) = 2 \operatorname{genus}(K_2) - 1$.

Let $H(K_1, K_2)$ be the link formed by adding the two knots K_1 and K_2 from above to the Hopf link (cf. Figure 3). Recall that the Thurston norm ball of the Hopf link is given by $\Diamond(1, 1)$. Let $\pi := \pi_1(X(L))$. It follows immediately from applying

FIGURE 3. $H(K_1, K_2)$ is obtained by tying K_1 and K_2 into the Hopf link

Proposition 5.1 twice that the norm ball of $||_{-}||_{i}$ equals $\Diamond(n_{i}+1, m_{i}+1)$ and that $||_{-}||_{N} = ||_{-}||_{T}$. The following result is now an immediate consequence of Proposition 5.1.

Corollary 5.2. We have the following sequence of inequalities of seminorms

$$||_{-}||_{A} = ||_{-}||_{0} \le ||_{-}||_{1} \le ||_{-}||_{2} \le \dots \le ||_{-}||_{N} = ||_{-}||_{T}.$$

In [Ha05] the second author gave examples of 3-manifolds M such that

$$||_{-}||_{A} = ||_{-}||_{0} \le ||_{-}||_{1} \le ||_{-}||_{2} \le \dots$$

but in that case it was not known whether the sequence of norms $||_{-}||_{i}$ eventually agrees with $||_{-}||_{T}$.

It is an interesting question to determine which 3-manifolds satisfy $||_{-}||_{T} = ||_{-}||_{n}$ for large enough n. We conclude this paper with the following conjecture.

Conjecture 5.3. If $\pi_1(M)_r^{(\omega)} \equiv \bigcap_{n \in \mathbb{N}} \pi_1(M)_r^{(n)} = \{1\}$, then there exists $n \in \mathbb{N}$ such that $||_{-}||_T = ||_{-}||_n$.

References

- [COT03] T. Cochran, K. Orr, P. Teichner, Knot concordance, Whitney towers and L²-signatures, Ann. of Math. (2) 157, no. 2: 433–519 (2003)
- [Co04] T. Cochran, Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004), 347–398.
- [DLMSY03] J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates, Approximating L²-invariants, and the Atiyah conjecture, Preprint Series SFB 478 Muenster, Germany. Communications on Pure and Applied Mathematics, vol. 56, no. 7:839-873 (2003)
- [FK05] S. Friedl and T. Kim, *Thurston norm, fibered manifolds and twisted Alexander polynomials*, preprint (2005), to be published by Topology.
- [FK05b] S. Friedl and T. Kim, Twisted Alexander norms give lower bounds on the Thurston norm, preprint (2005), to be published by the Trans. Amer. Math. Soc.
- [FK05c] S. Friedl and T. Kim, *The parity of the Cochran–Harvey invariants of 3–manifolds*, preprint (2005), to be published by the Trans. Amer. Math. Soc.
- [Fr05] S. Friedl, *Reidemeister torsion, the Thurston norm and Harvey's invariants*, preprint (2005), to be published by the Pac. J. Math.
- [Ge83] S. M. Gersten, Conservative groups, indicability, and a conjecture of Howie, J. Pure Appl. Algebra 29, no. 1: 59–74 (1983)
- [Ha05] S. Harvey, Higher-order polynomial invariants of 3-manifolds giving lower bounds for the Thurston norm, Topology 44: 895–945 (2005)
- [Ha06] S. Harvey, Monotonicity of degrees of generalized Alexander polynomials of groups and 3manifolds, Math. Proc. Camb. Phil. Soc., Volume 140, Issue 03, (2006) 431–450.
- [Hi40] G. Higman, The units of group-rings, Proc. London Math. Soc. (2) 46, (1940) 231–248.
- [HS83] J. Howie, H. R. Schneebeli, Homological and topological properties of locally indicable groups, Manuscripta Math. 44, no. 1-3: 71–93 (1983)
- [KL99] P. Kirk and C. Livingston, Twisted Alexander invariants, Reidemeister torsion and Casson– Gordon invariants, Topology 38 (1999), no. 3, 635–661.
- [Lic97] W. B. R. Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, 175. Springer-Verlag, New York, 1997.
- [Mc02] C. T. McMullen, The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology, Ann. Sci. Ecole Norm. Sup. (4) 35 (2002), no. 2, 153–171.
- [Mi66] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358-426
- [Pa85] D. Passman, The algebraic structure of group rings, Reprint of the 1977 original. Robert E. Krieger Publishing Co., Inc., Melbourne, FL (1985)

- [Ro94] J. Rosenberg, Algebraic K-theory and its applications, Graduate Texts in Mathematics, 147. Springer-Verlag, New York (1994)
- [St75] B. Stenström, Rings of quotients, Springer-Verlag, New York (1975)
- [St74] R. Strebel, Homological methods applied to the derived series of groups, Comment. Math. Helv. 49 (1974) 302–332
- [Ta57] D. Tamari, A refined classification of semi-groups leading to generalized polynomial rings with a generalized degree concept, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, Vol. 3: 439–440, Groningen (1957)
- [Th86] W. P. Thurston, A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 59 (1986), no. 339, i-vi and 99–130.
- [Tu86] V. Turaev, Reidemeister torsion in knot theory, Russian Math. Surveys 41: 119–182 (1986)
- [Tu01] V. Turaev, Introduction to Combinatorial Torsions, Lectures in Mathematics, ETH Zürich (2001)
- [Tu02a] V. Turaev, A norm for the cohomology of 2-complexes, Algebr. and Geom. Topology 2: 137-155 (2002)
- [Tu02b] V. Turaev, A homological estimate for the Thurston norm, preprint (2002), arXiv:math. GT/0207267

RICE UNIVERSITY, HOUSTON, TEXAS, 77005-1892

E-mail address: friedl@alumni.brandeis.edu, shelly@math.rice.edu