L>~ETA-INVARIANTS AND THEIR APPROXIMATION BY
UNITARY ETA-INVARIANTS

STEFAN FRIEDL

ABSTRACT. Cochran, Orr and Teichner introduced L?-eta-invariants to detect
highly non—trivial examples of non slice knots. Using a recent theorem by Liick
and Schick we show that their metabelian L?—eta-invariants can be viewed as the
limit of finite dimensional unitary representations. We recall a ribbon obstruction
theorem proved by the author using finite dimensional unitary eta-invariants. We
show that if for a knot K this ribbon obstruction vanishes then the metabelian
L?—eta~invariant vanishes too. The converse has been shown by the author not to
be true.

1. INTRODUCTION

A knot K C S™*? is a smooth submanifold homeomorphic to S™. A knot is called
slice if it bounds a smooth disk in D*. We say that a knot K is algebraically slice

if K has a Seifert matrix of the form (g IB;) where B,C, D are square matrices

of the same size. It is a well-known fact that any slice knot is algebraically slice.
Levine showed that in higher odd dimensions the converse is true, i.e. if a knot is
algebraically slice it is also geometrically slice (cf. [L69]). In the classical dimension
n = 1 this no longer holds as was shown by Cassan and Gordon [CG86].

A knot K C S? is called ribbon if there exists a smooth disk D in S x [0,1] € D*
(S? = S x 0) bounding K such that the projection map S® x [0, 1] — [0, 1] is a Morse
map and has no local minima. Such a slice disk is called a ribbon disk. Fox [F61]
conjectured that all slice knots are ribbon.

In [F03] the author studies metabelian unitary eta-invariants of M, the result of
zero framed surgery along a knot K C S3. These can be used to detect knots which
are not slice respectively, not ribbon.

For a pair (M3 ¢ : m(M) — G) Cheeger and Gromov [CG85] introduced the
L*-eta-invariant n® (M, ¢). Cochran, Orr and Teichner [COTO01] gave examples of
knots which look slice ‘up to a certain level’ but can be shown to be not slice using
L?-eta—invariants.

Liick and Schick [LS01] showed that L?>-eta—invariants can be viewed as a limit of
ordinary unitary eta-invariants if G is residually finite. We show that the metabelian
groups used by Cochran, Orr and Teichner are residually finite. Sorting out several
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technical problems we can show that if for a knot K the metabelian eta—invariant
ribbonness obstruction vanishes then the metabelian L?-eta—invariant sliceness ob-
struction vanishes as well. In [F03] we show that the converse is not true.

The structure of the paper is as follows. In section 2 we recall the eta—invariant
sliceness and ribbonness obstruction theorems of [F03]. In section 3 we give the
definition of (n)-solvability for a knot n € %N , and quote some results of [COTO01].
Furthermore we state the metabelian L?-eta—invariant sliceness obstruction theorem
of Cochran, Orr and Teichner. We state and prove the main theorem in section 4.

Acknowledgment. I would like to thank Jerry Levine, Kent Orr and Taehee Kim
for helpful discussions and comments.

2. UNITARY ETA—INVARIANTS AS KNOT INVARIANTS

Let M?*! be a closed odd-dimensional smooth manifold and « : mi (M) — U(k) a
unitary representation. Atiyah, Patodi, Singer [APS75] associated to (M, ) a number
n(M, «) called the (reduced) eta—invariant of (M, «). This invariant has the property
that if (W22 3) = (M?7™! ) then

n(M,a) = signg(W) — ksign(WW)
where sign; (W) denotes the signature of W twisted by £.

2.1. Abelian eta—invariants. Let K be knot,  a meridian and A a Seifert matrix
for K. Let av: m(Mg) — U(1) be a representation, then
(Mg, o) = 0.(K) = sign(A(1 — 2) + A(1 — 2))

where z := a(u) (cf. [L84]).
The following proposition follows immediately from the definitions and the explicit
computation of the abelian eta—invariant.

Proposition 2.1. Let K be an algebraically slice knot, then n(Mg,a) = 0 for any
representation « : m(My) — U(1) which sends the meridian to a transcendental
number.

If a knot satisfies the conclusion of this proposition we say that K has zero abelian
eta—invariant sliceness obstruction.

2.2. Metabelian eta—invariants. There exists a canonical map € : m(Mg) —
Hi(Mp) = Z sending the meridian to 1. Denote the k—fold cover of My by M. If k is
a prime power, then Casson and Gordon [CG86] showed that Hy(My) = Z&T Hy (My,)
where T'Hy(My) denotes the Z-torsion part of Hy(Mj). Furthermore there exists a
non-singular symmetric linking pairing

)\lk . TH1<Mk) X THl(Mk) — @/Z
We say that P, C T Hy(My) is a A—metabolizer for Ay, if Py is a A—submodule and if
P, = P = {x € TH\(M)|\ir(x,y) = 0 for all y € TH, (M)}
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Denote by Mp the universal abelian cover corresponding to e. Hl(Z\ZI i) carries a
A := Z[t,t7'-module structure, we will henceforth write H;(Mg,A) for Hy(Mf).
Blanchfield [B57] shows that there exists a non-singular A-hermitian pairing

/\Bl : Hl(MK,A) X Hl(MK,A) — Q(t)/A
For a A-submodule P C Hy (Mg, A) define
Pt = {v e H (Mg, )| Agi(v,w) =0 for all w € P}

If P C Hi(Mg,A) is such that P = P, then we say that P is a metabolizer for
Ap; and that Ap; is metabolic. Note that Kearton [K75] showed that a knot is alge-
braically slice if and only if Ap; is metabolic.

Recall that for a group G the central series is defined inductively by G := G and
GO =[G GOV, Let 7 := 7 (Mg). We study metabelian representations, i.e.
representations that factor through 7/7®. Consider

1 —aY/7® = q/7® /7 51

Note that 7 /7 = H (M) and /7)) = H,(Mg) = Z, in particular this sequence
splits and we get an isomorphism

m/m® =2 7 x Hi (Mg, A)

where 1 € Z acts by conjugating with u respectively by multiplying by ¢. Eta invari-
ants corresponding to metabelian representations in the context of knot theory were
first studied by Letsche [L00].

For a group G denote by RY"(G) (resp. Ry™™(G)) the set of irreducible, k-

dimensional, unitary (metabelian) representations of G. By R we denote the conju-
gacy classes of such representations. The above discussion shows that for a knot K
we can identify

RN (i (Mg)) = Ry (Z x Hy(Mg, A))
Lemma 2.2. [F03] Let z € S* and x : Hi(M,A) — H(M,\)/(#* —1) — S* a

character. Then
a(k,Z,X) = a(z’x) 7 X Hl(M, A) — U(k‘)

0 ... 0 1\"/x(h) 0 .. 0

1 ... 00 0 th) ... 0
R I B B

0 ... 10 0 0 ... x(t*'h)

defines a representation.

Conversely any irreducible representation o € RY™(Z wx Hy(M,A)) is (unitary)
conjugate to a, for some z € S* and a character x : Hi(M,A) — Hy(M,A)/(t" —
1) — S* which does not factor through H,(M,A)/(t' — 1) for some | < k.
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We denote by P (m;(Mf)) the set of metabelian representations of 7 (M) that
are conjugate to a.,,) with z transcendental and x of prime power order. Furthermore
for p a prime we write P,f;z’met(m(M i) for the set of representations where x has
order a power of p. In [F03] we prove the following sliceness obstruction theorem
which is the strongest theorem detecting non-torsion knots which is not based on
L?-eta-invariants.

Theorem 2.3. Let K be a slice knot, ki, ..., k. pairwise coprime prime powers, then
there exist A-metabolizers Py, C THy(My,),i = 1,...,r for the linking pairings A,
such that for any prime number p and any choice of irreducible representations «; :
m(Mg) — Z x H{(Mg,N)/(tki — 1) — U(k) vanishing on 0 x Py, and lying in
ngmet(m(MK)) we get (Mg, 0q @ -+ ®a,) = 0.

If a knot K satisfies the conclusion of this theorem we say that K has zero
metabelian eta—invariant sliceness obstruction.

In [F03] we prove the following ribbon obstruction theorem. In the proof we only
use the well-known fact that if K is ribbon then K has a slice disk D such that
(52 \ K) — m(D*\ D) is surjective.

Theorem 2.4. [F03] Let K C S® be a ribbon knot. Then there exists a metabolizer
P for the Blanchfield pairing such that for any o. ) with z transcendental and x of
prime power order, vanishing on 0 x P we get n(Mg, az,)) = 0.

We say that K has zero metabelian eta—invariant ribbonness obstruction if the
conclusion of the theorem holds for K.

3. THE COCHRAN—ORR—TEICHNER SLICENESS OBSTRUCTION

3.1. The Cochran—Orr—Teichner sliceness filtration. We give a short introduc-
tion to the sliceness filtration introduced by Cochran, Orr and Teichner [COTO1].
For a manifold W denote by W the cover corresponding to Wl(W)(”). Denote the
equivariant intersection form

Hy(W™) x Hy(W™) — Z[my (W) [ (W) ™)]

by An, and the self-intersection form by p,. An (n)-Lagrangian is a submodule
L C Hy(W®™) on which ), and g, vanish and which maps onto a Lagrangian of
)\0 . HQ(W) X Hg(W) — 7.

Definition. [COTO01, def. 8.5] A knot K is called (n)-solvable if My bounds a spin
4-manifold W such that Hy(My) — Hy(W) is an isomorphism and such that W
admits two dual (n)-Lagrangians. This means that A, pairs the two Lagrangians
non-singularly and that the projections freely generate Hao(W).

A knot K is called (n.5)-solvable if My bounds a spin 4-manifold W such that
H,(Mg) — Hy(W) is an isomorphism and such that W admits an (n)-Lagrangian
and a dual (n + 1)-Lagrangian.

We call W an (n)-solution respectively (n.5)-solution for K.
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Remark. 1. The size of an (n)-Lagrangian depends only on the size of Hy(W), in
particular if K is slice, D a slice disk, then D*\ N (D) is an (n)-solution for K
for all n, since Hy(D*\ N(D)) = 0.
2. By the naturality of covering spaces and homology with twisted coefficients it
follows that if K is (h)-solvable, then it is (k)-solvable for all k < h.

Theorem 3.1.
K is (0)-solvable < Arf(K) =0
K is (0.5)-solvable < K is algebraically slice
K is (1.5)-solvable = Casson-Gordon invariants vanish and K algebraically slice

The converse of the last statement is not true, i.e. there exist algebraically slice knots
which have zero Casson-Gordon invariants but are not (1.5)-solvable.

The first part, the third part and the < direction of the second part have been
shown by Cochran, Orr and Teichner [COTO1, p. 6, p. 72, p. 66, p. 73]. Cochran,
Orr and Teichner [COTO01, p. 6] showed that a knot is (0.5) solvable if and only if the
Cappell-Shaneson surgery obstruction in I'g(Z[Z] — Z) vanishes. This is equivalent
to a knot being algebraically slice (cf. [K89]). Taehee Kim [K02] showed that there
exist (1.0)-solvable knots which have zero Casson-Gordon invariants, but are not
(1.5)-solvable. Cochran, Orr and Teichner [COTO01] also showed that there exist (2)—
solvable knots which are not (2.5)-solvable.

3.2. L?—eta—invariants as sliceness-obstructions. In this section we’ll very quickly
summarize some L2-eta-invariant theory.

Let M? be a smooth manifold and ¢ : 7 (M) — G a homomorphism, then Cheeger
and Gromov [CG85] defined an invariant n® (M, ) € R, the (reduced) L?>-eta-
invariant. When it’s clear which homomorphism we mean, we’ll write n® (M, G) for

N (M, p).

Remark. 1t (W, ) = (M3, ), then (cf. [COTO01, lemma 5.9 and remark 5.10])
N (M, p) = sign® (W, ) — sign(W)

where sign® (W, ) denotes Atiyah’s L2-signature (cf. [A76]).

Cochran, Orr and Teichner study when L*-eta—invariants vanish for homomor-
phisms m(Mg) — G, where G is a PTFA-group. PTFA stands for poly-torsion-free-
abelian, and means that there exists a normal subsequence where each quotient is
torsion-free-abelian.

Theorem 3.2. [COTO02, p. 5] Let G be a PTFA-group with G™ = 1. If K is a knot,
and ¢ : m(Mg) — G a homomorphism which extends over a (n.5)-solution of Mk,
then n® (M, ©) = 0. In particular if K is slice and ¢ estends over D*\ D for some
slice disk D, then n® (Mg, o) = 0.
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Remark. It’s a crucial ingredient in the proposition that the group G is a PTFA-
group, for example it’s not true in general that 7 (M, Z/k) = 0 for a slice knot K.

Corollary 4.3 shows that n® (M, Z/k) = S5, 0 2ni;x (K), but this can be non-zero

j=1
for some slice knot K, e.g. take a slice knot with Seifert matrix
0011
0001
A=11 101
0100

Then n® (Mg, 7Z/6) = —2.
We use this theorem only in the abelian and the metabelian setting. Let QA :=
Q[t,t71].
Theorem 3.3. [COTO01]
1. If K is (0.5)-solvable, then n'® (Mg, 7Z) = 0.
2. If K is (1.5)-solvable, then there exists a metabolizer Py C Hy (Mg, QA) for the
rational Blanchfield pairing
Npig - Hy (Mi, QM) x Hy(My, QA) — Q(t)/Qlt, ¢
such that for all x € Py we get n® (Mg, 3,) = 0 where 3, denotes the map

Tl(MK) — 7 X Hl(MK,A) — Z X Hl(MK7QA) Z X Q(t>/@[t7t_1]

Proof. Let D be a slice disk for K, write Np := D*\ N(D). Then the statement
follows from proposition 3.2 and work by Letsche [L00] who showed that for Py :=
Ker{ H;(Mgk,QA) — Hy(Np,AQ)} the map [3, extends over 7 (Np). O

We say that K has zero abelian L?-eta-invariant sliceness obstruction if n® (Mg, Z) =
0. We say that K has zero metabelian L% eta-invariant sliceness obstruction if there
exists a metabolizer Py C Hy (Mg, QA) for Ap g such that for all z € Py we get

4. RELATION BETWEEN ETA-INVARIANTS AND L?~ETA-INVARIANTS

idX)\BlyQ(a:,—)
_—

If a knot K has zero abelian eta—invariant sliceness obstruction, then a multiple
of K is algebraically slice (cf. Levine [L69b] and Matumuto [M77]), in particular
K has zero abelian L*-eta-invariant sliceness obstruction. This fact will also follow
immediately from corollary 4.3. Conversely, if K has zero abelian L?-eta-invariant,
then it is not necessarily true that K has zero abelian eta—invariant, as was shown in
[F03].

In [K02] Tachee Kim gave examples of knots where the metabelian eta-invariant
sliceness obstruction is zero, but where the metabelian L?-eta-invariant obstruction
is non-—zero. This shows that more eta-invariants have to vanish to get zero L?>-eta—
invariants.
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Our main theorem is the following.

Theorem 4.1. Let K be a knot with zero metabelian eta—invariant ribbonness ob-
struction, then K has zero metabelian L?—eta—invariant sliceness obstruction.

The proof of the theorem will be done in the next two sections. In [F03] we showed
that the converse is not true, i.e. there exists a knot with zero metabelian L% -eta—
invariant but non—zero metabelian eta—invariant ribbonness obstruction

4.1. Approximation of L>*-eta—invariants.

Definition. We say that G is residually finite it there exists a sequence of normal
subgroups G O G; D Gy D ... of finite index [G : G;] such that N;G; = {1}. We call

the sequence {G;};>1 a resolution of G.

If ¢ : m(M) — G is a homomorphism to a finite group, then define n(M,G) =
n(M, ag) where ag : m (M) 2 G — U(CG) is the canonical induced unitary repre-
sentation given by left multiplication.

Theorem 4.2. Let ¢ : m (M) — G be a homomorphism.
1. If G is finite, then

n(M,G) = ZaeRi”(G) dim(a)n(M,ac, (M)

(2) _  nM,G)
n (MvG) = 1G]

2. If G is residually finite group then the above equality “holds in the limit”, i.e. if
{Gi}i>1 is a resolution of G, then

) M,G/G,)
(M, G) = lim 777( .
n ) ;

( ) i—oo |GG

Proof. The first statement follows immediately from the well-known fact of the rep-
resentation theory of finite groups that

CG= Y Vime
acRiITT(Q)

The second statement is shown in [A76], Liick and Schick proved the last parts (cf.
[LSO1, remark 1.23]).
0

Corollary 4.3. Let K be a knot, then

T](2)<MK7 Z/k> = %U(MK, Z/k> = % Z?zl O e2mij/k (K>
U(Q)(MKaZ) = fsl o.(K)

This corollary was also proven by Cochran, Orr and Teichner (cf. [COT02]), using
a different approach.
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Proof. The first part is immediate from the decomposition of C[Z/k] into one-dimensional
C|[Z/k]-modules. For the second part consider the sequence Z D 2\Z D 3!Z D 417 D
..., by theorem 4.2 and corollary 4.3
k-1
My 7 /K g Oe2mij/k! K
K, / ) 2]70 /k( ) / O'Z(K)
S1

o( L _
= Jim ———— = lim 5 =

77(2) (MK7 Z)

The last equality follows from the fact that o,(K) is a step function with only finitely
many break points. []

4.2. Proof of theorem 4.1. Assume that K has zero metabelian eta-invariant
ribbon obstruction. Let P be a metabolizer such that n(Mg,a(z,x)) = 0 for all
Qzy) € Pe(m(Mg)) with x(P) = 0. Let Py := P ® Q, this is a metabolizer for the
rational Blanchfield pairing Ap;g. We will show that for any x € Py n® (Mg, 8,) = 0,
where 3, denotes the map

idX)\BlyQ(.’E,—
_—

T (Mic) — 7w Hy(Mg, A) — Z w Hy (Mg, QA) L 7 x Q(t)/Qt, 7]

This implies the theorem.
So let © € Py. Note that nz € P for some n € N. The map (3,, factors through
Z x Ag(t)7'A/A, hence 3, factors through Z x n™*Ag(t)"*A/A.

Claim. There exists an isomorphism
Im{Z x n " Ag(t) "A/A —=Z x Q(t)/Qt, t ]} — Z x A (t) 'A/A
Proof. Consider the short exact sequence
0— Ag(t) 'A/A = n "AR () AN — A () PA /T AR TTA 2 A/ — 0
since tensoring with Q is exact and since A/n is Z—torsion we see that
Im{n'Ag(t) *A/A — A (t) 'QA/QA} 2 Im{Ax(t) 'A/A — A (t) 'QA/QA}
But Ag(t)*A/A — Ag(t)TQA/QA — Q(t)/Qlt, t71] is injective, since Ag(t) " A/A

is Z—torsion free. This shows that
Im{n'Ax(t) *A/A — Q(t)/Q[t,t 1]} = Ak (t) 'A/A
Since all maps preserve the Z-action the claim follows. O
Lemma 4.4. Let K be a knot, then Z x Ag(t)"'A/A is residually finite.

Proof. Write Ak (t) = agyt® + -+ + ait + ag with ag, # 0,a9,; = a;. Let p be
a prime number coprime to ag,. Write H := Ag(t)"'A/A and H; := p’H. Then
{H;};>1 forms a resolution for H since there exists an embedding A (t)"*A/A =
A/Ak ()N — Z[1/asy)*? of Z-modules.

Since the A-modules H/H; are finite there exists for each i a number k; such that
thiy = v for all v € H/H; where t denotes a generator of Z. Note that Z/k; x H/H,
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and the map Z x H — Z x H/H; are well-defined. We can in fact pick k; with the
extra properties that k; > ¢ and k;|k;; 1, then it is clear that the kernels of the maps

7w Ag(t) 'N/N — Z/k; x H/H;
define a resolution for Z x A (t)"*A/A.

Let
G:=Im{B, : Zx H(M,A) — Zx n *Ag(t)"A/A —7Z x Q(t)/Q[t,t™ ']}

Note that G := Z x H for some H C A (t)"'A/A. Tt follows from the proof of lemma
4.4 that we can find H; C H and k; such that H/H; is a p-group and such that the
kernels G; of

Zx H — Z/kY x H/H;

form a resolution for any exponents s; € N with 1 < 51 < s < .... We will specify

the s; later. Using the fact that in general n® (M, ¢ : 7 (M) — J) = n® (M, o :
m (M) — Im(J)) (cf. [COT02]) we get

NP (Mg, B, : m (M) — Z % Q)/Qlt, ¢ 1)) = 0 (M, B, : m(Mx) — G)

The groups G; are a resolution for G, hence by theorem 4.2

; foirr Sdim(a)n(Mg, o
77(2)(MK’5I . m(Mg) — G) = lim n(Mg,G/G;) — lim ZaER (G/Gy) (a)n(Mg, a)

i—o  |G/Gy i—00 |G /G,
To continue we have to understand the irreducible representations of G/G; = Z/k]" x

H/H;. The proof of the following lemma is the same as the proof of lemma 2.2 in
[F03].

Lemma 4.5. Let F be a finite module over Ay, := Z[t]/(t* —1). Then any irreducible
representation Z/k* x F' — U(l) is conjugate to

0 ... 0 1\" /x(h) 0 .. 0

I T (N 0  x(th) ... 0

Ql,2,x) (n,h) = Q) (n,h):==z — : : . :
0 ... 10 0 0 ... x(#1th)

for some z € St with 2* =1 and x : F — F/(t' — 1) — S a character which does
not factor through F/(t" — 1) for some r < 1. In particular there are no irreducible
representations of dimension greater than k.

Remark. Note that k; is in general a composite number since the order of a p—group
is always composite. In particular n® (Mg, 3,) is the limit of eta-invariants which
are in general not of prime power dimension. This explains why the vanishing of
the metabelian eta—invariant sliceness obstruction, which involves only prime power
dimensional eta-invariants, does not imply the vanishing of the L?-eta—invariant slice-
ness obstruction.
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This lemma shows that all irreducible representations Z x H;(Mg,\) — G —
G/G; = Z/k} x H/H; — U(l) are of the type ;) where Z' =1 and y is of prime
power order since H/H; is a p-group. Furthermore, since x € Py and Py = P6 we
have x(P) = 0. If the 2z’s had been transcendental our proof would be complete by
now since we assumed that n(Mg, a(.,)) = 0 for all x of prime power order with
X(P) =0 and all transcendental z.

The next two propositions show that n(Mg, a(.,y)) = 0 for almost all z. We will
see that the non-zero contributions in IG/#GZI > ackirr(cyay) Am(a)n(Mg, o) vanish in
the limit.

Proposition 4.6. There exists a number C such that for any x : Hi (Mg, \)/(t* —
1) — S of prime power order the map
St — Z
z = (Mg, a(k, z,x))
has at most Ck discontinuities.

For the proof we need the following lemma.

Lemma 4.7. [L94, p. 92] Let M? be a manifold, then for any r € N the map
e : Re(m(M)) — R
a — n(M, a)
is continuous on %, == {a € Ry(m (M))| 323, dim(HX (M, CF)) = r}.

Let J := Zx Hi (Mg, A). Denote the J-fold cover of My by M. After triangulating
M we can view

as a complex of free Z.J modules where rank(Co(M)) = rank(Cs(M)) = 1 and

rank(C4 (M)) = rank(Cy(M)) = m for some m. Represent d, by an m x m-matrix R
over ZJ. Then for a € Ry(m (Mg)) we get

det(a(R)) # 0= o € Yo,

since H*(M,CF) = H,(C.(M) ®z; CF).
For a character y : Hy (Mg, A) — Hy (Mg, A)/(tF — 1) — ST define

Sky =1z € S det(a . (R)) =0}

Lemma 4.8. There exists a number C' such that |Sk | < Ck for all x of prime power
order.

Proof. Denote by f : Z[J] — Z[t,t"'] the map induced by (n,v) — t". For g =
Doty @it'y Ay # 0, a5, # 0 define deg(g) = ny —no. Let C' := mmax{deg(f(Ry))}.
Given a character x denote by z a variable, then D(z) := a(.,y(R) is a km x km—

matrix over Clz,z7']. It’s clear that deg(det(D(z))) < Skm = Ck, hence either
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det(D(z)) = 0 or there are at most Ck z’s which are zeroes of det(D(z)). Letsche
[L00, cor. 3.10] showed that for any x of prime power order Sy, does not contain any
transcendental number, in particular det(D(z)) is not identically zero. O

This lemma proves proposition 4.6.
Proposition 4.9. For each k there exists Dy € R such that
In(Mg, a)| < Dy
for all a € Ry(m(Mg)) and all | < k.
Proof. Let

S, = {a € Ry(m(M))] > dim(H (M, C*)) > r}

1=0

Levine [L94, p. 92] shows that these are subvarieties of Ry (m(M)), that ¥y = () for
some N and that 7 is continuous on 3, \ Er+1 for all 7.

We claim that 7, is bounded on each ¥,. Note that 3, \27'-1-1 has only finitely
many components since 3,1 is a subvariety. If 7, is not bounded on X then it is
therefore not bounded on at least one component C' of 3, \ Er—l—l

Since 7, (M) is finitely generated it follows that R;(m (M )) compact, hence C' C
3, is compact too. We can therefore find a sequence p; € C' such that p; converges to
some point p € C and such that lim;_, Ne(p;) = 0o. Since C' is path connected and
locally path connected we can find a curve 7 : [0,1] — C such that (1 — —) = p;.
Note that y(p[0,1]) = [D,o0) for some D. In particular we can find sequences ¢;
and r; in 2, \ ¥,,1 converging to point p with n(q;) = i + 1 and n(r;) = 4. But this
is a contradiction to the fact, established by Levine [L94, p 92], that 7y mod Z :
Ry (m(M)) — R/Z is continuous. O

We are now ready to show that 7®) (Mg, 3,) = 0 for any 2 € Py which proves of
theorem 4.1. Recall that we have to show that

=0
e [G/G

We pick s; with the extra property k; it > Dy, for all i. Using lemma 4.2 we get
(M, G/G)[ < > dim(a)|p(M, o)
aeRiITT(G/Gy)

Recall that G/G; = Z/k}* x H/H; and that H/H; is a p-group. By definition of k;
any character actually factors through (H/H;)/(t* — 1). In particular by lemma 4.5
there are no irreducible representations of dimension bigger than k;. It now follows
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that the above term is in fact less or equal than

iYY< Y S (Mr i, 7))

= DirT ) — . . i —1)—S1 Sq
J=L aeRIT(G/G:) J=1 c(H/H) /(B =1)=5Y a1 k' g

From corollary 4.6 and using that n(Mg, a(.,,y) for all transcendental z and all x of
prime power order with y(P) = 0, it follows that n(Mg, a(z, x)) = 0 for all but at

most Ck; values of z. Using this observation and using proposition 4.9 we get that
the above term is less or equal than

k;
> > CjDy, < k}C|H/H,|Dy,
J=1 x:(H/H)/({tI-1)—S1
Therefore
C a(Mg,G/G) | . KCDy|H/H)| . KCDy,
(2)M — 11 7]( K t <1 i ki 0 g i)

since lim; ., k; = oo and by the choice of s;. This concludes the proof of theorem
4.1.
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