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Abstract. This note for the most part retells the contents of [Fr88].

1. Introduction

1.1. Knot theory. By a knot we will always mean a simple closed curve in S3, and
we are interested in knots up to isotopy. Interest in knots picked up in the late 19th
century, when the physicist Tait was trying to find a catalog of all knots with a small
number of crossings. Tait produced a correct list of all knots with up to 9 crossings.
One can show using simple combinatorics, that his list is complete, but he had no
formal proof, that the list did not have any redundancies, i.e. he could not show that
any two knots in the list are in fact non-isotopic.

To a knot K ⊂ S3 we can associate the knot exterior XK := S3 \ νK, where νK
denotes an open tubular neighborhood around K. The idea now is to apply methods
from algebraic topology to the knot exteriors. A straight forward calculation shows
that H0(XK ;Z) = Z, H1(XK ;Z) = Z and Hi(XK ;Z) = 0 for i ≥ 2. It thus looks
like homology groups are useless for distinguishing knots. Nonetheless, there’s a little
opening one can exploit. Namely, the fact that for any knotK we haveH1(XK ;Z) = Z
means that given any knot K and any n ∈ N one can talk of the n-fold cyclic cover
XK,n corresponding to

π1(XK)→ H1(XK ;Z) = Z→ Z/nZ.
In particular, given any n ∈ N the group H1(XK,n;Z) is an invariant of the knot K.
This simple idea was exploited by Seifert and Alexander in the 1920s and they showed
that these invariants are strong enough to distinguish the knots in Tait’s list.

In the systematic study of cyclic covers of knot exteriors Alexander was lead to
define a symmetric polynomial ∆K(t) ∈ Z[t±1] with ∆K(1) = 1, usually referred to as
the Alexander polynomial of K, which he obtained from the homology of the infinite
cyclic cover of XK . The precise definition of ∆K(t) is of no concern to us, but see
[Ro76]. What is is important to us is the following theorem of Fox [Fo56, We79].

Theorem 1.1. For any K and any n we have

H1(XK,n;Z) ∼= Z⊕ An(K)
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whereby An(K) is a group with

|An(K)| =
n∏
k=1

∆K(e2πik/n).

Hereby given a group A we denote by |A| the number of elements of A, where |A| = 0
means that A is infinite.

In the following, given a knot K and n ∈ N we write

bn(K) := |An(K)|.

The following question arises:

Question 1.2. Does the Alexander polynomial contain more information, than the
homology groups of the cyclic covers? Put differently, if J and K are two knots with
bn(J) = bn(K) for all n, does that imply, that ∆J(t) = ∆K(t)?

This question is related to a more general question, see [BF15]: does the profinite
completion of the knot group, which contains the information on all finite quotients
of a knot group, determine the knot itself?

1.2. Dynamics. Given a square matrix A we denote by χA(t) = det(t id−A) the
characteristic polynomial of A. We start out with the following lemma.

Lemma 1.3. Let A be an integral d× d-matrix with det(A) 6= 0 and let n ∈ N. We
assume that no eigenvalue of A is a root of unity. We write

pn := number of points of period n of the map ·A : Rd/Zd → Rd/Zd.

Then

pn =

∣∣∣∣ n∏
l=1

χA(e2πil/n)

∣∣∣∣.
Proof. We have to determine the number of elements in the kernel of

·(id−An) : Rd/Zd → Rd/Zd.

We will first show that this number equals | det(An− id)|. We write B = id−An. We
consider the following diagram

Rd/Zd

B∼=
��

0 // Zd/BZd // Rd/BZd // Rd/Zd // 0,

where the bottom sequence is exact. It follows that the kernel of the map ·B : Rd/Zd →
Rd/Zd is isomorphic to Zd/BZd, i.e. it is a group of order | det(B)|.
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Now we denote by λ1, . . . , λd the eigenvalues of A. Then

det(id−An) =
d∏

k=1

(1− λnk)

=
d∏

k=1

n∏
l=1

(e2πil/n − λk)

=
n∏
l=1

χA(e2πil/n).

�

So we arrive at the following question.

Question 1.4. Let A be an integral d × d-matrix with det(A) 6= 0. To what degree
do the number of periodic points determine A?

2. Fried’s theorem

2.1. The statement of the theorem. Let p = p(t) ∈ R[t±1] be a polynomial.
Given n ∈ N we define

rn(p(t)) =
n∏
k=1

p(e2πik/n) = the resultant of p(t) and tn − 1

and
bn(p(t)) = |rn(p(t))|.

The following theorem was proved by Fried [Fr88].

Theorem 2.1. Let

p(t) = adt
d + · · ·+ a1t+ a0 ∈ R[t±1]

be a polynomial. If p(t) is reciprocal, i.e. if ai = ad−i, i = 0, . . . , d with a0 = ad > 0,
and if no root of unity is a zero of p(t), then the numbers bn(p(t)) determine p(t).

Remark.

(1) The assumption that all bn(p)’s are non-zero is necessary, see e.g. [Fr88].
(2) Hillar [Hi05] extended the result to non-reciprocal polynomials, in this case

the resultants determine p(t) up to a finite ambiguity.
(3) Hillar–Levine [HL07] showed that a finite number of resultants already deter-

mines p(t).

The Alexander polynomial of a knot is reciprocal. We thus obtain the following
corollary.

Corollary 2.2. Let K be a knot such that ∆K(t) has no zero that is a root of unity,
then the homology groups of the finite cyclic covers of XK determine the Alexander
polynomial.
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2.2. Group rings of abelian groups. In the proof of Theorem 2.1 we will need
one basic fact about group rings, which we state in this section. In the following let
G be a multiplicative abelian group, not necessarily finitely generated. We introduce
some definitions:

(1) We denote by p→ p the involution induced by g 7→ g−1 for g ∈ G.
(2) Given r, s ∈ Z[G] we write r ∼ s if r = ±gs for some g ∈ G.

Lemma 2.3. Let G be a multiplicative abelian group. If β ∈ Z[G] satisfies

β ∼
d∏
i=1

(gi − 1)

where g1, . . . , gd ∈ G are elements of infinite order with gd+1−i = g−1i , then β deter-
mines the factors gi − 1.

The lemma is proved in detail in [Fr88]. We only sketch a proof.

Sketch of proof. The lemma can easily be reduced to the case that G is finitely gen-
erated and torsion-free. The lemma follows from the fact that the group ring of a
finitely generated torsion-free group is a unique factorization domain, together with
the fact that for h, k ∈ G of infinite order we have (h − 1) ∼ (k − 1) if and only if
h = k±1. �

In the following we let G = C∗ = C \ {0}. Given z ∈ C∗ we denote by [z] the
corresponding element in Z[C∗]. Furthermore, given a non-zero rational function
p(t) ∈ C(t)) with p(0) 6= 0 we define

divisor(p(t)) :=
∑

z zero of p(t)

[z]−
∑

z pole of p(t)

[z] ∈ Z[C∗]

where we take the zeros and poles with multiplicities.

2.3. The proof of Fried’s theorem. The proof provided below follows Fried’s ex-
position quite carefully. Let

p(t) = adt
d + · · ·+ a1t+ a0 ∈ R[t±1]

be a reciprocal polynomial with a0 = ad > 0. We denote by λ1, . . . , λd the zeros of
p(t). Given n ∈ N we write

rn = rn(p(t)) = resultant of tn − 1 and p(t)

= an0 ·
d∏
i=1

(λni − 1),

bn = bn(p(t)) = |rn|.

Now we assume that no zero of p(t) is a root of unity. This implies that all the
bn(p(t)) are non-zero. We want to show that the bn’s determine p(t). The key idea
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will be to study the zeta function

B(t) = exp
( ∑
n≥0

bn
tn

n

)
.

This choice is inspired by the example in Section 1.2 and the zeta-function defined in
[AM65] in the study of periodic points of a self-automorphism.

Before we study B(t) we first need to determine the relationship between rn and
bn.

Claim. There exist ε, δ ∈ {−1, 1} such that the sign of rn equals ε · δn.

Since p(t) is a real polynomial we can write

rn = an0 ·
d∏
i=1

(λni − 1)

= an0︸︷︷︸
sign = 1

·
∏
λ 6=λ

(λni − 1)(λi
n − 1)

︸ ︷︷ ︸
sign = 1

·
∏
λi>1

(λni − 1)︸ ︷︷ ︸
sign = 1

·
∏

λi∈(−1,1)

(λni − 1)︸ ︷︷ ︸
sign = -1

·
∏
λi<−1

(λni − 1)︸ ︷︷ ︸
sign = (-1)n

So ε is determined by the number of zeros in (−1, 1) and δ is determined by the
number of zeros < −1. This concludes the proof of claim.

By the above claim we have

bn = ε · δn · rn = ε · (δa0)n ·
d∏
i=1

(λni − 1).

We denote by P the power set of {1, . . . , d}. Given α ∈ P denote by |α| the number
of elements in α and we define λα to be the product of the λi’s for which the indices
appear in α. Multiplying out all products in the above formula of bn we see that

bn =
∑
α∈P

ε(−1)d−|α|︸ ︷︷ ︸
=:ηα

·
(
δa0λ

α︸ ︷︷ ︸
=:µα

)n
=
∑
α∈P

ηα · µnα.

Finally we consider the power series

B(t) = exp
( ∑
n≥0

bn
tn

n

)
.
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It follows from the above calculations that

B(t) = exp
( ∑
n≥0

bn
tn

n

)
= exp

( ∑
n≥0

∑
α∈P

ηαµ
n
α
tn

n

)
= exp

( ∑
α∈P

∑
n≥0

ηαµ
n
α
tn

n

)
=

∏
α∈P

exp
(
− ηα

∑
n≥0

−µnα
tn

n︸ ︷︷ ︸
=ln(1−µαt)

)

=
∏
α∈P

exp
(
− ηα ln(1− µαt)

)
=

∏
α∈P

(1− µαt)−ηα .

Summarizing we showed that B(t) is a rational function with divisor

divisor(B(t)) =
∑
α∈P

(−ηα) · [µ−1α ] = −
∑
α∈P

ηα · [µα] ∈ Z[C∗].

On the other hand, multiplying out in the group ring Z[C∗] shows that

−ε[δa0] ·
d∏
i=1

([λi]− [1]) =
∑
α∈P

ηα · [µα] ∈ Z[C∗].

As mentioned above, none of the λi’s is a root of unity. Put differently, each λi is an
element of infinite order in C∗.

Now we can conclude the proof of the theorem. The bn’s determine the power series
B(t). By the above calculations this shows that the bn’s determine∑

α∈P

ηα · [µα] ∼
d∏
i=1

([λi]− [1]) ∈ Z[C∗].

Our assumption that p(t) is reciprocal shows that we can assume that λi = λd−i,
i = 0, . . . , d. Also, by assumption all λi’s are elements of infinite order in C∗. It
follows from Lemma 2.2 that the bn’s determine the λi’s. Finally we can solve for a0
using say b1.
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