
A NOTE ON A TOPOLOGICAL APPROACH TO THE
µ-CONSTANT PROBLEM IN DIMENSION 2
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Abstract. We provide an example, which shows that studying homological and
homotopical properties of cobordisms between arbitrary, that is not necessarily
negative, graph manifolds is not enough to prove the µ-constant conjecture of Lê
Dũng Tráng in complex dimension 2.

1. Introduction

1.1. Background. The study of equisingularity is one of the main questions in sin-
gularity theory. The systematic study dates back to Zariski [Za65a, Za65b, Za68].
One of the milestones is the fact that if the Milnor number µ is constant under the
deformation of isolated hypersurface singularities in C

n+1, and if n 6= 2, then the
deformation is topologically trivial. This fact was proved by Lê, and Lê–Ramanujam
in the series of papers [Le71, Le72, LR76]. The case n = 1 is simple and relies on a
full classification of the singularities of plane curves (compare [Za65a]), while the case
n > 2 uses the h-cobordism theorem and the fact, that links of isolated hypersurface
singularities in C

n+1 for n > 2 are simply connected. In particular, the proof in the
case n > 2 is purely topological. The problem for n = 2 has remained open for 40
years.
There were attempts to solving the µ-constant conjecture using a topological ap-

proach, i.e. studying the cobordism of links of singularities. Perron and Shalen in
[PS99] proved the µ-constant conjecture under an additional hypothesis on funda-
mental groups of the links. They use a detailed study of graph manifolds and a deep
understanding of the cobordism between graph manifold. A natural question that
arises is:

Can one prove the µ-constant conjecture in dimension 2 using only properties of

cobordisms of graph manifolds?

A precise formulation of the above question is given in Question 1.4. In this note
we show, that if one admits graph manifolds that are not negative (that is, are not
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boundaries of negative definite plumbed manifolds), then the answer to Question 1.4
is negative. As links of singularities are negative definite, the counterexample that we
give, does not imply that topological arguments alone are insufficient to prove the µ-
constant conjecture in dimension 2. However, it indicates that topological approaches
must take into account negative definiteness of graph manifolds.

1.2. The µ-constant problem. We begin with the following formulation of the µ-
constant problem. We refer to [Te76, GLS06] for background material on deformations
and equisingularity questions.

Question 1.1 (The µ-constant problem). Suppose we are given a family of complex

polynomial functions Ft : (C
n+1, 0) → (C, 0) smoothly depending on a parameter t ∈

D ⊂ C, where D is a unit disk. Assume that for each t, the hypersurface Xt = F−1
t (0)

has an isolated hypersurface singularity at 0 ∈ C
n+1. Let µt be the Milnor number

of the singularity of Xt at 0. If µt is a constant function of t, does it imply that the

topological type of the singularity of Xt at 0 does not depend on t?

The results [Le71, Le72, LR76] can be resumed as follows.

Theorem 1.2. Question 1.1 has an affirmative answer if n = 1 or n ≥ 3.

A possible approach to the problem, and actually the one that is sufficient for cases
n 6= 2 is the following. Let B0 ⊂ C

n+1 be a small closed ball around 0, such that
M0 := X0 ∩ ∂B0 is the link of singularity (X0, 0). Let us pick t ∈ C sufficiently small
so that Xt ∩ ∂B0 is isotopic to M0. Let us now choose a smaller ball Bt ⊂ C

n+1 such
Mt := Xt ∩ ∂Bt is the link of the singularity (Xt, 0). Let W = Xt ∩ (B0 \Bt). Then
W is a smooth manifold of real dimension 2n with boundary M0 ⊔ −Mt.
The cobordism W has various topological properties which we now summarize in

the following proposition.

Proposition 1.3. The manifolds (W,M0,Mt) satisfy the following properties.

(W0) dimRW = 2n, dimR M0 = dimRMt = 2n− 1, furthermore W,M0 and Mt are

compact and oriented.

(W1) If n > 2, then π1(Mt) = π1(M0) = {e}, if n = 2, then the image of π1(Mt) in
π1(W ) normally generates π1(W ).

(W2) W can be built from Mt × [0, 1] by adding handles of indices 0, 1, . . . , n.
(W3) If n = 2, then the manifolds M0 and Mt are oriented, irreducible, graph man-

ifolds.

Furthermore, if we have the equality of Milnor numbers µt = µ0, then the following

additional fact is satisfied

(W4) The maps H∗(M0;Z) → H∗(W ;Z) and H∗(Mt;Z) → H∗(W ;Z) induced by

inclusions are isomorphisms.

Remark. Proposition 1.3 is well known to the experts, for a convenience of the reader
we sketch the proofs or give references.
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(W0) is obvious. For n > 2, (W1) is [Mi68, Theorem 6.4]. (W1) for n = 2 and (W4)
in the general case can be found in [LR76, proof of Theorem 2.1]. The main idea is
to consider the Milnor fibers Ft and F0 for the singularities (Xt, 0) and (X0, 0). By
[Mi68, Theorem 6.5], Ft has the homotopy type of a wedge of µt spheres S

n, and F0

has the homotopy type of a wedge of µ0 spheres Sn. Using the equivalence of the
Milnor fibration over circle and over a disk (see e.g. [Ham71, Satz 1.5]) we infer that
Ft ∪Mt

W is homeomorphic F0. Now if n = 2, then Ft and F0 are simply connected,
hence we get (W1) by the van Kampen theorem.
If µt = µ0, then Ft and F0 have the same homotopy type. Since the homology

groups of Ft and F0 are zero in all dimensions but 0 and n, the standard homological
arguments yield (W4).
The property (W2) is proved in [AnF59]. Finally, (W3) follows from [Ne81].

As it was written in [LR76], in case n > 2, the conditions (W0), (W1) and (W4)
imply that W is an h-cobordism and since dimR W ≥ 6 we can appeal to the h-
cobordism theorem of Smale (see [Sm62, Mi65]) which shows that W is in fact a
product, which in turn implies that the singularities (Xt, 0) and (X0, 0) are topo-
logically equivalent. In case n = 2, neither of the manifolds Mt and M0 is simply
connected, nor does the Whitney trick work (compare [GS99, Section 9.2]). However,
since the graph 3-manifolds are somehow rigid, it is still natural, though, to ask the
following question.

Question 1.4 (Topological µ-constant problem). Let (W,Mt,M0) satisfy conditions

(W0)–(W4) for n = 2. Does it imply that M0 and Mt are homeomorphic?

As is pointed out in [PS99, p. 3], the result of Levine [Lv70, Theorem 3] implies,
that if M0 and Mt are homeomorphic, then the singular points (Xt, 0) and (X0, 0) are
topologically equivalent. The key element of this observation is the fact that M0 and
Mt are simple knots by [Mi68, Lemma 6.4] and the fact, see e.g. [Sae00, Corollary
1.3], that M0 and Mt have equivalent Seifert matrices. In [PS99, Proposition 0.5] (see
also [AsF11, p. 1180]) the following theorem was proved.

Proposition 1.5. Question 1.4 has an affirmative answer if we additionally assume

that π1(Mt) surjects onto π1(W ).

The main goal of this note, and actually the content of next section is the following
result.

Theorem 1.6. Question 1.4 has a negative answer.

2. A negative answer to Question 1.4

2.1. The construction. LetK ⊂ S3 be a non-trivial torus knot T (p, q). We consider
L = K# − K, where −K is the mirror image of K with the opposite orientation.
Then it is well-known (see e.g. [GS99, p. 210-213]) that L bounds a ribbon disk D

in B4. This implies that there exists an open ball B′ ⊂ B4 with the same center and
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smaller radius, such that ∂B′∩D is an unknot, the distance function on D∩ (B4 \B′)
is Morse (for this we might need to move slightly the common center of the two balls)
and has only critical points of index 0 and 1, and D ∩ (B4 \B′) is an annulus.
Let νD be an open tubular neighbourhood of D. We define X = B4 \ (B′ ∪ νD).

Let Y = ∂X ∩ νD. We define now

W = X ∪Y −X,

i.e. we take a double of X along Y .

Lemma 2.1. The boundary of W is a disjoint union of S1 × S2 and the double of

S3 \ νL.

Proof. We write S ′ = ∂B′ and J := D ∩ S ′. Note that J is the unknot. It follows
immediately from the definitions that ∂W is the disjoint union of the double of S3\νL
and the double of S ′ \ νJ . The knot J ⊂ S ′ is the unknot, i.e. S ′ \ νJ is a solid torus.
The double of S ′ \ νJ is thus canonically homeomorphic to S1 × S2. �

We define Mt = S2 × S1 and M0 as the double of S3 \ νL. Since L is non-trivial it
is clear that Mt and M0 are non-homeomorphic. In the next section we will see that
the triple (W,Mt,M0) satisfies conditions (W0) to (W4), which thus gives us a proof
of Theorem 1.6.

2.2. Proof of (W0)–(W4). The property (W0) is obvious. It is a straightforward
consequence of Alexander duality and the Mayer–Vietoris sequence that the maps
H∗(M0;Z) → H∗(W ;Z) and H∗(Mt;Z) → H∗(W ;Z) induced by inclusions are iso-
morphisms. This proves that (W4) is satisfied.
Let us now show (W2). We use the theory of embedded handle calculus as in

[GS99, Section 6.2]. Namely, the function ‘distance from the origin’ on B4 \ B′ has
only critical points of index 0 and 1, when restricted to D∩ (B4 \B′). It follows from
[GS99, Proposition 6.2.1] that X can be built from ∂B′ \D by adding only handles
of index 1 and 2. By taking the double we obtain that W is built from S2 × S1 by
adding only handles of index 1 and 2 as desired.
We now turn to the proof of (W1). Let x be a generator of π1(S

1 × S2) which we
can represent by a meridian of the unknot J = D ∩ S ′. We claim that x normally
generates π1(W ). We denote by Γ the smallest normal subgroup of π1(W ) which
contains x. We thus have to show that in fact Γ = π1(W ). First note that the
meridian of J is homotopic in X, via meridians of the ribbon disk, to a y meridian
of the knot L. It is well-known that a meridian normally generates a knot group.
We thus see that Im(π1(S

3 \ νL) → π1(W )) ⊂ Γ. Note that π1(M0) is generated by
the fundamental groups of the two knot exteriors which are glued together. We now
see that Im(π1(M0) → π1(W )) ⊂ Γ. It follows from (W2) that W is obtained from
Mt × [0, 1] by adding handles of indices 0, 1, 2. By turning the handle decomposition
‘upside-down’ we see that we can obtain W from M0 × [0, 1] by adding handles of
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indices 2, 3, 4. This implies in particular that π1(M0) → π1(W ) is surjective. It now
follows that π1(W ) = Γ as desired.
We finally turn to the proof of (W3). It is well-known that S3 \ νK is a Seifert

fibered space. Furthermore, we can obtain S3 \νL = S3 \νK#−K by gluing S3 \νK
and S3 \ ν −K along their boundaries to S1 × Σ where Σ is a pair of pants, i.e. Σ
is obtained by removing three open disks from S2. It now follows that S3 \ νL is a
graph manifold. Finally M0 is obtained by gluing two graph manifolds along their
boundary, which shows that M0 is also a graph manifold.

2.3. Further properties of (W,Mt,M0). To conclude, we point out that if the
triple (W,Mt,M0) arises from singularity theory, then the following conditions (W5),
(W6) and (W7) are additionally satisfied. The properties (W6) and (W7) are not
of topological nature. We do not know, if all the properties (W0)–(W7) together,
enforce the cobordism W to be a product.

(W5) The manifolds Mt and M0 are negative, in other words there exists a negative
definite plumbing diagram for each of them, see [Ne81].

(W6) The manifold W carries a canonical symplectic form, coming from the Kähler
structure on it. The boundary M0 is convex, while Mt is concave with respect
to that form. The contact structures induced on Mt and M0 are Milnor fillable
(see [Var80, CNP06]).

(W7) The manifold W is Stein. Furthermore, Mt is the pseudo-convex part of its
boundary and the manifold M0 is pseudo-concave.
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