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Abstract. In a classic paper Zeeman introduced the k-twist spin of a knot K
and showed that the exterior of a twist spin fibers over S1. In particular this result
shows that the knot K#−K is doubly slice. In this paper we give a quick proof
of Zeeman’s result. The k-twist spin of K also gives rise to two metabolizers for
K#−K and we determine these two metabolizers precisely.

1. Introduction

Throughout this note we fix a category CAT where CAT =DIFF, PL or TOP. For
k ∈ Z and a knot K ⊂ Sn+2, Zeeman [Ze65, p. 487] introduced the construction
of a knot Sk(K) ⊂ Sn+3, called the k-twist spin of K. We recall the definition in
Section 2. The following theorem is the main result in [Ze65].

Theorem 1.1. If k 6= 0, then the (closed) knot exterior Sn+3 \ νSk(K) fibers over
S1, where the fiber is the result of removing an open ball from the k-fold branched
cover of K.

A slice disk for a knot K ⊂ Sn+2 is an embedded (n+ 1)-ball B in Dn+3 such that
∂B = K. If K admits a slice disk, then we say that K is slice. Note that if K is
slice, then the double of the slice disk gives rise to an (n+ 1)-sphere in Sn+3 whose
intersection with Sn+2 is precisely K.
A knot K ⊂ Sn+2 is called doubly slice if K is the intersection of an unknot U ⊂ Sn+3

with the equator sphere Sn+2 ⊂ Sn+3. By the above a knot which is doubly slice
is also slice, but note that in general the converse does not hold. We refer to
[Su71, St78, Ki06] for more details.
It is well-known that for any k the intersection Sk(K)∩Sn+2 is isotopic to K#−K.
Furthermore, it is straightforward to see that the fiber in Theorem 1.1 for k = ±1
is a ball. As was pointed out by Sumners [Su71, Corollary 2.9] Zeeman’s theorem
therefore has the following corollary.

Corollary 1.2. For any knot K ⊂ Sn+2 the connect sum K#−K is doubly slice.

An unscientific poll among the authors and a wider group of topologists showed
that the statements of Theorem 1.1 and of Corollary 1.2 are both well-known but
that the proofs are less well understood. In this note we therefore present a short,
self-contained proof of Theorem 1.1. Our approach is very explicit, decomposing the
exterior of the knot Sk(K) into the union of two appropriately chosen components
we simply write down the fibre bundle structures on each separately and then glue
them together. This is not the first reproof of Theorem 1.1 and in [GK78, Corollary

Date: October 24, 2014.
1



2 STEFAN FRIEDL AND PATRICK ORSON

1.11] a different technique is applied to recover the same result. A ‘disk knot version’
of Corollary 1.2 was also proved by Levine [Lev83, Theorem C].
We then turn our attention to the related algebra of Blanchfield forms. Let Λ =
Z[t±1] and Ω = Q(t). Given an odd-dimensional knot K ⊂ S2m+1 there exists a
non-singular (−1)m+1-hermitian pairing

λK : Hm(S2m+1 \ νK; Λ)×Hm(S2m+1 \ νK; Λ)→ Ω/Λ,

known as the Blanchfield pairing. We refer to [Bl57] and [Hi12] for details. A
metabolizer for the Blanchfield pairing is a Λ-submodule P ⊂ H := Hm(S2m+1 \
νK; Λ) such that

P = P⊥ := {v ∈ H |λK(v, w) = 0 for all w ∈ P}.
It is well-known that a slice disk gives rise to a metabolizer for the Blanchfield
pairing of K. It also follows immediately from the definitions that k-twist spinning
a knot gives rise to two slice disks for Sk(K)∩S2m+1, which is isotopic to K#−K.
Our second main theorem determines the corresponding two metabolizers precisely.
Here in the introduction we give a slightly informal statement.

Theorem 1.3. Let K ⊂ S2m+1 be an oriented knot and let k ∈ Z. We write
H = Hm(S2m+1\νK; Λ). Then there exists an isomorphism f : H⊕H → Hm(S2m+1\
ν(K#−K); Λ) which induces an isomorphism of Blanchfield forms

λK ⊕−λK → λK#−K

such that the two metabolizers corresponding to the two slice disks arising from twist
spinning are

{v ⊕−v | v ∈ H} and {v ⊕−tkv | v ∈ H}.

We refer to Theorems 4.3 and 4.6 for a much more precise, and consequently con-
siderably longer, formulation. It was a surprise to the authors how difficult it was
to make the statement of Theorem 1.3 rigorous and in Section 4 we take great care
to use precise arguments that keep track of the effects of changing base-points.

Acknowledgment. We are grateful to the University of Glasgow for its hospitality
and we wish to thank Danny Ruberman and Matthias Nagel for helpful comments.
The second author wishes to thank his advisor Andrew Ranicki for his generous
advice and patient guidance. We also wish to thank the referee for several helpful
comments.

2. Setup and Proof

Throughout this paper, given k < l we view Sk as the subset of Sl ⊂ Rl+1 given
by setting the first l− k coordinates to zero. Given k and l we furthermore pick an
identification of Dk × Dl with Dk+l. As usual we view D2 also as a subset of C.
If U is a submanifold of a manifold V we use the notation νU for an open tubular
neighbourhood of U in V .
Let K ⊂ Sn+2 be an oriented knot. We can write Sn+2 = Dn+2 ∪Sn+1 D̃n+2 as the
union of two (n+ 2)-balls in such a way that K ∩ D̃n+2 = 0× D̃n is the trivial disk
knot in D̃2 × D̃n = D̃n+2. We write J := K ∩ Dn+2, the other disk knot in the
decomposition.
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Given z ∈ S1 we denote by

ρz : Dn+2 = D2 ×Dn → Dn+2 = D2 ×Dn

(w, x) 7→ (zw, x)

the rotation by z in the D2-factor. Note that ρz restricts to the identity on J∩Sn+1.
Also note that we can and will assume that the decomposition Dn+2 = D2 ×Dn is
oriented in such a way that for any x ∈ Sn+1 \ νJ the closed curve

S1 → D2 ×Dn \ νJ
z 7→ ρz(x)

gives the oriented meridian of K.
Now let k ∈ Z. In order to define the k-twist spin of K, we use the following
decomposition

Sn+3 = S1 ×Dn+2 ∪ D2 × Sn+1.

Denote by Φk the diffeomorphism

Φk : S1 ×Dn+2 → S1 ×Dn+2

(z, x) 7→ (z, ρzk(x)).

The k-twist spin Sk(K) is then defined as

Sk(K) := Φk(S
1 × J)︸ ︷︷ ︸

⊂S1×Dn+2

∪ D2 × Sn−1︸ ︷︷ ︸
⊂D2×Sn+1

.

More informally, Sk(K) is given by spinning the disk knot J around the S1-direction,
performing k twists around J as you go, and then capping off the result by D2×Sn−1.

Proof of Theorem 1.1. The proof consists of two parts. We will first describe Sn+3 \
νSk(K) in a different, more convenient, way. We will then use this description to
write down the promised fiber bundle over S1. The first part is well-known, in fact
this description of Sn+3 \ νSk(K) is also given in [Fr05, p. 201].
We write Y := Dn+2 \ νJ . Note that Y ∩ ∂Dn+2 = Sn+1 \ νSn−1. As usual we can
identify Sn+1 \ νSn−1 with S1 ×Dn. Now we see that

Sn+3 \ νSk(K) = S1 ×Dn+2 \ Φk(S
1 × νJ) ∪ D2 × (Sn+1 \ νSn−1)

= Φk(S
1 × Y ) ∪ D2 × S1 ×Dn.

Note that Φk restricts to an automorphism of S1 × (Y ∩ Sn+1) = Y ∩ ∂Dn+2 =
S1 × S1 × Dn. We can thus glue S1 × Y and D2 × S1 × Dn together via the
restriction of Φk to S1 × S1 ×Dn. The map

S1 × Y ∪Φk D2 × S1 ×Dn → Φk(S
1 × Y ) ∪ D2 × S1 ×Dn,

which is given by Φk on the first subset and by the identity on the second subset, is
then evidently a well-defined diffeomorphism.
We will use this description of Sn+3 \ νSk(K) on the left to write down the fibre
bundle structure over S1. First, elementary obstruction theory shows that there
exists a map ϕ : Y → S1 such that the restriction of ϕ to Y ∩∂Dn+2 = Sn+1 \νSn−1

is just the projection map Sn+1 \ νSn−1 = S1 ×Dn → S1.
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Claim 2.1. The map

(1)
p : S1 × Y → S1

(z, x) 7→ z−kϕ(x)

defines a fiber bundle with fiber

{(z, x) ∈ S1 × Y | z−kϕ(x) = 1}.

Given w ∈ S1 we have

p−1(w) = {(z, x) ∈ S1 × Y | z−kϕ(x) = w}.
Let w,w′ ∈ S1. We pick a k-th root ξ of w−1w′. Then the map (z, x) → (zξ, x)
defines a homeomorphism p−1(w) → p−1(w′). It is now straightforward to see that
p is in fact a fiber bundle. This concludes the proof of the claim.
It is straightforward to verify that the assumption that k 6= 0 implies that the map

(2)
p : S1 × Y → S1

(z, x) 7→ z−kϕ(x)

defines a fiber bundle.
It follows from the definitions that the map

S1 × Y ∪Φk D2 × S1 ×Dn → S1

which is given by p on the first subset and by projection on the S1-factor in the
second subset is the projection of a fiber bundle.
It remains to identify the fiber of the fibration. The fiber ‘on the right’ (of the
decomposition) is D2 × {1} ×Dn whereas the fiber ‘on the left’ is given by

Yk = {(z, x) ∈ S1 × Y |ϕ(x) = zk}
which is just the k-fold cyclic cover of Y corresponding to the epimorphism π1(Y )→
H1(Y ;Z)

∼=−→ Z→ Z/k.
Note that Y is in fact diffeomorphic to the knot exterior Sn+2 \ νK, and that hence
Yk is just the k-fold cyclic cover of Sn+2 \ νK. It is straightforward to see that the
fiber

Yk ∪S1×{1}×Dn D
2 × {1} ×Dn

is the result of attaching a 2-handle to Yk along the preimage of a meridian under
the covering map Yk → Y . Put differently, the fiber is obtained by removing an
open ball from the k-fold branched cover of K. �

We immediately obtain the following corollary.

Corollary 2.2. If K ⊂ Sn+2 is a knot, then S±1(K) ⊂ Sn+3 is a trivial knot.

Proof. First note that the ±1-fold branched cover of Sn+2 along K is just Sn+2

again. It thus follows from Theorem 1.1 that S±1(K) bounds an (n + 2)-ball in
Sn+3, which means that S±1(K) ⊂ Sn+3 is a trivial knot. �

We also make following observation concerning twist spins.

Lemma 2.3. If K ⊂ Sn+2 is a knot, then for any k ∈ Z the knot Sk(K) ∩ Sn+2 is
isotopic to K#−K.
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Proof. We use the notation in the definition of the twist spins of K. In particular
we denote by J ⊂ Dn+2 the disk knot corresponding to K. We denote by J ′ the
string knot which is defined by Φ(−1×J) = −1×J ′. Put differently, J ′ is the result
of rotating J ⊂ D2 ×Dn = Dn+2 by kπ. Note that J ′ is isotopic in Dn+2 to J rel
the boundary. We write

Sn+3 = S1 ×Dn+2 ∪ D2 × Sn+1

with equator sphere

Sn+2 = {±1} ×Dn+2 ∪ D1 × Sn+1.

The above decomposition of Sn+3 gives rise to an orientation preserving map

Ψ: S1 ×Dn+2 → Sn+3

such that

Ψ(S1 ×Dn+2) ∩ Sn+2 = {−1} ×Dn+2 ∪ {1} ×Dn+2.

Note that the restriction of Ψ to {−1}×Dn+2 is orientation reversing and that the
restriction of Ψ to {1}×Dn+2 is orientation preserving. In particular Φk(S

1× J)∩
Sn+2 is the union of J with the mirror image of J ′.
Since J and J ′ are isotopic rel the boundary it follows easily that Sk(K) ∩ Sn+2 is
isotopic to the connected sum of K and −K. �

We finally recall that a knot K ⊂ Sn+2 is called doubly slice if there exists an unknot
U ⊂ Sn+3 with U ∩Sn+2 = K. The following corollary is an immediate consequence
of Corollary 2.2 and Lemma 2.3. This consequence was first observed by Sumners
[Su71, Corollary 2.9].

Corollary 2.4. If K ⊂ Sn+2 is an oriented knot, then K#−K is doubly slice.

3. Base points and infinite cyclic covers

In this section we will quickly bring into focus several indeterminacy issues for
infinite cyclic covers which often get swept under the carpet.
Let X be a connected topological space with H1(X) ∼= Z, equipped with an iden-

tification H1(X) = Z. We pick a base point x ∈ X. We denote by X̃x → X the
infinite cyclic cover corresponding to the canonical epimorphism

φx : π1(X, x)→ H1(X) = Z = 〈t〉.

Note that X̃x has a canonical action by the deck transformation group Z = 〈t〉. In

particular we can view Hi(X̃x) as a module over the group ring of Z = 〈t〉, i.e. over
Λ = Z[t±1]. We henceforth write

Hx
i (X; Λ) := Hi(X̃x).

The question now arises, whether these homology Λ-modules depend on the choice
of the base point x. If y is a different base point, then we can pick a path p from x to
y which then defines an isomorphism p∗ : H

x
i (X; Λ)→ Hy

i (X; Λ). We thus see that
the isomorphism type of the homology Λ-modules does not depend on the choice of
the base point. In the following we denote by Hi(X; Λ) the isomorphism type of the
Λ-module.
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The next question which arises is, to what degree does the isomorphism p∗ depend
on the choice of the path p. If q is another path from x to y, then it is straightforward
to see that

q−1
∗ ◦ p∗ : Hx

i (X; Λ)→ Hx
i (X; Λ)

is multiplication by tφx(qp), where q is the same path as q but with opposite orienta-
tion.
Now let Y be a connected subspace of X which contains the base point x and such
that the inclusion induces an isomorphism H1(Y ;Z) ∼= H1(X;Z). We then obtain

an induced map of infinite cyclic covers Ỹx → X̃x, in particular we obtain for each
i an induced map

Hx
i (Y ; Λ)→ Hx

i (X; Λ).

Now we turn to the study of infinite cyclic covers of knots and disk knots. Let
K ⊂ Sn+2 be an oriented knot. Note that H1(Sn+2 \ νK;Z) ∼= Z and we identify
H1(Sn+2 \ νK;Z) with Z by identifying the oriented meridian of K with 1.
Suppose we are given a decomposition Sn+2 = Dn+2 ∪Sn+1 D̃n+2 as the union of
two (n + 2)-balls in such a way that K ∩ D̃n+2 = 0× D̃n is the trivial disk knot in
D̃2 × D̃n = D̃n+2. We write J := K ∩ Dn+2. Note that the inclusion induces an
isomorphism H1(Dn+2 \ νJ ;Z) → H1(Sn+2 \ νK;Z). We use this isomorphism to
identify H1(Dn+2\νJ ;Z) with Z. Now we pick a base point x ∈ (Dn+2\νJ)∩Sn+1. A
straightforward Mayer–Vietoris argument shows that for any i the inclusion induces
an isomorphism

Hx
i (Dn+2 \ νJ ; Λ)

∼=−→ Hx
i (Sn+2 \ νK; Λ).

4. Metabolizers for Blanchfield pairings

Throughout this section we write Λ := Z[t±1] and Ω := Q(t). We view these as
rings with involution given by t 7→ t−1 extended trivially linearly to the coefficients.
Throughout this section let K ⊂ S2m+1 be an odd-dimensional knot. As we men-
tioned in the introduction, there exists a non-singular (−1)m+1-hermitian pairing

λK : Hm(S2m+1 \ νK; Λ)×Hm(S2m+1 \ νK; Λ)→ Ω/Λ,

known as the Blanchfield pairing. We refer to [Bl57] and [Hi12] for details. Re-
call that a metabolizer for the Blanchfield pairing is a Λ-submodule P ⊂ H :=
Hm(S2m+1 \ νK; Λ) such that

P = P⊥ := {v ∈ H |λK(v, w) = 0 for all w ∈ P}.

Recall that a slice disk for the knot K ⊂ S2m+1 is an embedded 2m-ball B in
D2m+2 such that ∂B = K. A well-known Poincaré duality argument shows that the
inclusion induced map H1(S2m+1 \ νK;Z)→ H1(D2m+2 \ νB;Z) is an isomorphism.
Given a base point x ∈ S2m+1 \ νK we can therefore in particular consider the
induced map

Hx
m(S2m+1 \ νK; Λ)→ Hx

m(D2m+2 \ νB; Λ).

The following proposition shows that a slice disk gives rise to a metabolizer for the
Blanchfield pairing of K. We refer to [Ke75] and [Let00, Proposition 2.8] for the
proof.
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Theorem 4.1. Let B ⊂ D2m+2 be a slice disk for K ⊂ S2m+1. Then

ker
(
Hm(S2m+1 \ νK; Λ)→ Hm(D2m+2 \ νB; Λ) /Z-torsion

)
is a metabolizer for the Blanchfield pairing λK of K.

Henceforth we consider the k-twist spin Sk(K) of the knot K ⊂ S2m+1. Recall that
we can then write S2m+1 = D2m+1 ∪S2m D̃2m+1 as the union of two (2m+ 1)-balls in
such a way that K ∩ D̃2m+1 = 0× D̃2m−1 is the trivial disk knot in D̃2 × D̃2m−1 =
D̃2m+1. We write J := K ∩D2m+1, the other disk knot in the decomposition. Recall
that the k-twist spin Sk(K) of the knot K ⊂ S2m+1 is then defined as

Sk(K) := Φk(S
1 × J)︸ ︷︷ ︸

⊂S1×D2m+1

∪ D2 × S2m−2︸ ︷︷ ︸
⊂D2×S2m

.

Now we write

S1
+ = {z ∈ S1 | im(z) ≥ 0},

D2m+2
+ = S1

+ ×D2m+1 ∪ {z ∈ D2 | im(z) ≥ 0} × S2m.

We similarly define S1
− and D2m+2

− . Note that D2m+2
− ∪ D2m+2

+ = S2m+2 and that
D2m+2
− ∩D2m+2

+ = S2m+1. Also note that B+ := Sk(K)∩D2m+2
+ and B− := Sk(K)∩

D2m+2
− are slice disks for

L := Sk(K) ∩ S2m+1.

As we have seen in Theorem 4.1, the slice disks B+ and B− give rise to metabolizers
for the Blanchfield pairing of L = Sk(K) ∩ S2m+1. We start out with the following
lemma.

Lemma 4.2. Let K ⊂ S2m+1 be an oriented knot. We write H = Hm(S2m+1\K; Λ).
We furthermore write L = Sk(K) ∩ S2m+1, B+ := Sk(K) ∩ D2m+2

+ and B− :=
Sk(K) ∩D2m+2

− . Then the modules Hm(D2m+2
− \ νB−; Λ) and Hm(D2m+2

+ \ νB+; Λ)
are Z-torsion free.

Proof. It follows easily from the definitions that the inclusion induced maps

S2m+1 \ νK ← D2m+1 \ νJ → (D2m+2
± \ νB±) ∩ S1

± ×D2m+1 → D2m+2
± \ νB±

are homotopy equivalences. It follows that the modules Hm(D2m+2
− \ νB±; Λ) are

isomorphic to Hm(S2m+1 \ νK; Λ) of K, which is well-known (see [Lev77]) to be
Z-torsion free. �

The combination of Theorem 4.1 with Lemma 4.2 shows that

P± := ker
{
Hm(S2m+1 \ νL; Λ)→ Hm(D2m+2

± \ νB±; Λ)
}

are metabolizers of the Blanchfield form of L = Sk(K) ∩ S2m+1. We write H =
Hm(S2m+1 \ νK; Λ). Recall that L is isotopic to K# − K. It is well-known that
there exists an isomorphism

(3) H ⊕H
∼=−→ Hm(S2m+1 \ ν(K#−K); Λ)

∼=−→ Hm(S2m+1 \ νL; Λ).

It is therefore tempting to write down P± as submodules of H ⊕ H. But this
undertaking is fraught with difficulties since the isomorphism in (3) is not canonical
and depends on various choices of base points and connecting paths. In the following
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we will carefully pick an isomorphism as in (3) and then describe the submodules
of H ⊕H corresponding to P±.
The discussion now naturally breaks up into two cases, either k is even, in which case
Sk(K)∩ (−1×D2m+1) = −1×J , or k is odd, in which case Sk(K)∩ (−1×D2m+1) =
−1 × ρ−1(J). The two subsequent Theorems 4.3 and 4.6 are the promised more
precise version of Theorem 1.3.

Theorem 4.3. Let K ⊂ S2m+1 be an oriented knot and let k ∈ Z be even. We
define J, L,B+ and B− as above. Let x ∈ (D2m+1 \ νJ)∩S2m+1 be a base point. We
write H = Hx

m(S2m+1 \ νK; Λ). We denote by Φ the map

H
∼=←− Hx

m(D2m+1 \ νJ ; Λ)
∼=−→ H1×x

m (1× (D2m+1 \ νJ); Λ)→ H1×x
m (S2m+1 \ νL; Λ),

where the left and right maps are induced by inclusions and where the middle map is
the obvious isomorphism. We pick a path γ in D1 × S2m ⊂ S2m+1 = ±1×D2m+1 ∪
D1 × S2m from −1× x to 1× x. We denote by Ψ the map

H
∼=←− Hx

m(D2m+1 \ νJ ; Λ)
∼=−→ H−1×x

m (−1× (D2m+1 \ νJ); Λ)

→ H−1×x
m (S2m+1 \ νL; Λ)

γ∗−→ H1×x
m (S2m+1 \ νL; Λ),

where the first and the third map are induced by inclusions, the second map is the
obvious isomorphism and the fourth map is induced by the change of base point using
the path γ. Then Φ⊕Ψ induces an isomorphism of pairings

λK ⊕−λK → λL

such that the two metabolizers arising from twist spinning

ker
(
H ⊕H Φ⊕Ψ−−−→ H1×x

m (S2m+1 \ νL; Λ)→ H1×x
m (D2m+2

− \ νB−; Λ)
)

and ker
(
H ⊕H Φ⊕Ψ−−−→ H1×x

m (S2m+1 \ νL; Λ)→ H1×x
m (D2m+2

+ \ νB+; Λ)
)

are respectively equal to

{v ⊕−t
k
2 v | v ∈ H} and {t

k
2 v ⊕−v | v ∈ H}.

Proof. We write X := S2m+1 \ νK and we denote by c : X̂ → X the infinite cyclic
covering of X corresponding to the base point x and corresponding to the kernel of

the epimorphism π1(X, x) → H1(X;Z)
∼=−→ 〈t〉 which sends an oriented meridian of

K to t. Given any subset U of X we henceforth write Û = c−1(U).
Now we write Y := D2m+1 \ νJ . As discussed in Section 3 the inclusion induces an
isomorphism

Hm(Ŷ )→ Hm(X̂) = Hx
m(X; Λ) =: H

This allows us to make the identification H = Hm(Ŷ ).
We write W := S2m+2 \ Sk(K) where we again decompose S2m+2 as S1 ×D2m+1 ∪
D2 × S2m. We equip W with the base point 1 × x ∈ S1 × D2m+1. We denote by

c : W̃ → W the infinite cyclic covering of W corresponding to t the epimorphism

π1(W, 1×x)→ H1(W ;Z)
∼=−→ 〈t〉 which sends an oriented meridian of K in D2m+1 to

t. Throughout the proof we think of W̃ as equivalence classes of paths emanating
from the base point 1× x. As before, given any subset U of W we henceforth write
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Ũ = c−1(U). Note that with our conventions we have a canonical homeomorphism

Ŷ → Ỹ . We will henceforth make the identification H = Hm(Ỹ ).
We write W0 := W ∩ S1 ×D2m+1 and consider the map

q : W̃0 → W0 → S1 ×D2m+1 → S1

where the last map is just projection onto the first factor. Note that q−1(1) = Ỹ .
We refer to the figure below for an illustration.
Now we consider the homotopy

hs : W0 → W0

(z, p) 7→ (eisz, ρeisk(p))

with parameter s ∈ R. Note that this homotopy lifts to a homotopy

h̃s : W̃0 → W̃0

with parameter s ∈ R. In fact this lifting can be described very explicitly: given a
path α from the base point 1× x to a point (z, p) in W0 we consider the path

β : [0, s] 7→ W0

r 7→ (zeir, ρeir(p)).

We then have h̃s([α]) = [βα]. Note that for any r, s ∈ R we have h̃r+s = h̃r ◦ h̃s.

W̃0
˜D2m+1 \ νJ = q−1(1)

q
S1

h̃s
c

W0

hs D2m+1 \ νJ

Also note that for any z ∈ S1 and s ∈ R the map hs induces an isomorphism

h̃s : Hm(q−1(z))→ Hm(q−1(eisz)).

Furthermore, for any interval I in S1 with end points z, z′ = zeis, s ∈ (0, 2π), the
inclusion maps induce isomorphisms

ιz : Hm(q−1(z))→ Hm(q−1(I)) and ιz′ : Hm(q−1(z′))→ Hm(q−1(I))

such that

(4) ι−1
z′ ◦ ιz = h̃s.

We can now formulate the following claim.
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Claim 4.4. We denote by f the map

H = Hm(q−1(1))→ Hm( ˜S2m+1 \ νL)

and we denote by g the map

H = Hm(q−1(1))
h̃π−→ Hm(q−1(−1))→ Hm( ˜S2m+1 \ νL.)

Then f ⊕ g induces an isomorphism of pairings

λK ⊕−λK
∼=−→ λL

such that

ker
(
H ⊕H f⊕g−−→ Hm(S2m+1 \ νL; Λ)→ Hm(D2m+2

+ \ νB+; Λ)
)

= {v ⊕−v | v ∈ H}, and

ker
(
H ⊕H f⊕g−−→ Hm(S2m+1 \ νL; Λ)→ Hm(D2m+2

− \ νB−; Λ)
)

= {v ⊕−tkv | v ∈ H}.

In order to prove the claim we first consider the following commutative diagrams of
inclusion induced maps:

Hm(q−1(1))⊕Hm(q−1(−1)) //

��

Hm(q−1(S1
+)) = Hm( ˜W0 ∩D2m+2

+ )

��

Hm( ˜S2m+1 \ νL) // Hm( ˜D2m+2 \ νB+) = Hm( ˜W ∩D2m+2
+ ).

Using a Mayer-Vietoris argument it is straightforward to see that the vertical maps
are isomorphisms. It follows from the above commutative diagram and from the
definitions that

ker
(
H ⊕H f⊕g−−→ Hm(S2m+1 \ νL; Λ)→ Hm(D2m+2

+ \ νB+; Λ)
)

= ker
(
ι1 ⊕ (ι−1 ◦ h̃π) : Hm(q−1(1))⊕Hm(q−1(1))→ Hm(q−1(S1

+))
)
.

By (4) we have h̃π = ι−1
−1 ◦ ι1. It thus follows that the above kernel equals

ker
(
ι1 ⊕ ι1 : H ⊕H → Hm(q−1(S1

+))
)

= {v ⊕−v | v ∈ H}.
Essentially the same argument shows that

ker
(
H ⊕H f⊕g−−→ Hm(S2m+1 \ νL; Λ)→ Hm(D2m+2

− \ νB−; Λ)
)

= ker
(
ι1 ⊕ (ι−1 ◦ h̃π) : Hm(q−1(1))⊕Hm(q−1(1))→ Hm(q−1(S1

−))
)
.

By (4) we have h̃π = ι−1
1 ◦ ι−1, i.e. ι−1 = ι1 ◦ h̃π. It thus follows that the above

kernel equals

ker
(
ι1 ⊕ (ι1 ◦ h̃2π) : H ⊕H → Hm(q−1(S1

−))
)
.

On the other hand it follows from (2) that the map

h̃2π : H = Hm(q−1(1))→ H = Hm(q−1(1))

is multiplication by t−k. It follows that

ker
(
ι1 ⊕ (ι1 ◦ h̃2π) : H ⊕H → Hm(q−1(S1

−))
)

= {v ⊕−tkv | v ∈ H}.
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It remains to show that f ⊕ g induces an isomorphism of pairings

λK ⊕−λK → λL.

We write J ′ = ρ−1(J) ⊂ Dn. Note that hπ induces an isotopy from the disk knot
J ⊂ D2m+1 to the disk knot J ′ ⊂ D2m+1. With the sign conventions, see the proof
of Lemma 2.3, it follows easily that for any v, w ∈ Hm(D2m+1 \ νJ ; Λ) we have
λJ ′(hπ(v), hπ(w)) = −λJ(v, w). This concludes the proof of the claim.

The theorem now follows from the final claim:

Claim 4.5. For any v ∈ H we have

Φ(v) = f(v) and Ψ(v) = t−
k
2 g(v).

To prove this, note that f , g, Φ, and Ψ are induced by chain maps which, in an

abuse of notation, we denote by the same letters. Then any v ∈ H = Hm(Ỹ ) can be
represented by a finite sum of based m-chains σ in Y , so it is sufficient to show the
claim for such a σ. It follows from the definitions that Φ(σ) = f(σ). On the other
hand, if we consider Ψ(σ) and g(σ), then we see that they are represented by the
same chains but the basing is different. To make precise this difference, consider the
following path in W

α : [0, 1] → W
s 7→ (eπis, ρeπiks(x)).

Then the basings for Ψ(σ) and g(σ) differ by the concatenation of α and γ. But

under the map H1(W ;Z) → 〈t〉 the image of [αγ] is precisely t
k
2 . It follows that

g(σ) = t
k
2 Ψ(σ). This concludes the proof of the claim. �

The case that k is odd is a little more complicated since in this case J ′ = ρ−1(J).
For ε ∈ {−1, 1} we consider the path

δε : [0, 1] → −1×D2m+1

t 7→ −1× ρeεπi(1−t)(x),

Now we have the following theorem.

Theorem 4.6. Let K ⊂ S2m+1 be an oriented knot and let k ∈ Z be odd. We define
J, L,B+ and B− as above. Let x ∈ (D2m+1 \ νJ)∩ S2m+1 be a base point. We write
H = Hx

m(S2m+1 \ νK; Λ). We denote by Φ the map

H
∼=←− Hx

m(D2m+1 \ νJ ; Λ)
∼=−→ H1×x

m (1× (D2m+1 \ νJ); Λ)→ H1×x
m (S2m+1 \ νL; Λ),

where the left and right maps are induced by inclusions and where the middle map
is the obvious isomorphism. Now we pick ε ∈ {−1, 1} and we pick a path γ in
D1 × S2m ⊂ S2m+1 = ±1×D2m+1 ∪D1 × S2m from −1× x to 1× x. We denote by
Ψ the map

H
∼=←− Hx

m(D2m+1 \ νJ ; Λ)
∼=−→ H−1×x

m (−1× (D2m+1 \ νJ); Λ)
∼=−→ H

−1×ρ−1(x)
m (−1× (D2m+1 \ νJ ′); Λ)

δε∗−→ H−1×x
m (−1× (D2m+1 \ νJ ′); Λ)

→ H−1×x
m (S2m+1 \ νL; Λ)

γ∗−→ H1×x
m (S2m+1 \ νL; Λ),
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where the first and the fifth map are induced by inclusions, the second map is induced
by the obvious homeomorphism, the third map is induced by the homeomorphism ρ−1,
the fourth map is induced by the path δε, and the last map is induced by the change
of base point using the path γ. Then Φ⊕Ψ induces an isomorphism of pairings

λK ⊕−λK → λL

such that the two metabolizers arising from twist spinning

ker
(
H ⊕H Φ⊕Ψ−−−→ H1×x

m (S2m+1 \ νL; Λ)→ H1×x
m (D2m+2

− \ νB−; Λ)
)

and ker
(
H ⊕H Φ⊕Ψ−−−→ H1×x

m (S2m+1 \ νL; Λ)→ H1×x
m (D2m+2

+ \ νB+; Λ)
)

are respectively equal to

{v ⊕−t
k+ε
2 v | v ∈ H} and {t

k−ε
2 v ⊕−v | v ∈ H}.

The proof is similar to the proof of Theorem 4.6 and we leave it as a refreshing
exercise to the reader.
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