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Abstract. We give a simple obstruction for a knot to be amphichiral, in terms of
the homology of the 2-fold branched cover. We work with unoriented knots, and so
obstruct both positive and negative amphichirality.

1. Introduction

By a knot we mean a 1-dimensional submanifold of S3 that is diffeomorphic to S1.
Given a knot K we denote its mirror image by mK, the image of K under an orientation
reversing homeomorphism S3 → S3. We say that a knot K is amphichiral if K is
(smoothly) isotopic to mK. Note that we consider unoriented knots, so we do not
distinguish between positive and negative amphichiral knots.

In this paper we will see that the homology of the 2-fold branched cover can be used
to show that many knots are not amphichiral. Before we state our main result we recall
some definitions and basic facts.

(1) Given a knot K we denote the 2-fold cover Σ(K) of S3 branched along K by
Σ(K). If A is a Seifert matrix for K, then a presentation matrix for H1(Σ(K);Z)
is given by A+ AT . See [Ro90] for details.

(2) The determinant of K is defined as the order of H1(Σ(K);Z). By (1) we have
det(K) = det(A+AT ). Alternative definitions are given by det(K) = ∆K(−1) =
JK(−1) where ∆K(t) denotes the Alexander polynomial and JK(q) denotes the
Jones polynomial [Li97, Corollary 9.2], [Ka96, Theorem 8.4.2].

(3) Given an abelian additive group G and a prime p, the p-primary part of G is
defined as

Gp := {g ∈ G | pk · g = 0 for some k ∈ N0}.

By studying the linking form on the 2-fold branched cover we prove the following theorem
which is the main result of this article.

Theorem 1.1. Let K be a knot and let p be a prime with p ≡ 3 mod 4. If K is
amphichiral, then the p-primary part of H1(Σ(K)) is either zero or it is not cyclic.

The following corollary, proven by Goeritz [Go33, p. 654] in 1933, gives an even more
elementary obstruction for a knot to be amphichiral.
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Corollary 1.2. (Goeritz) Suppose K is an amphichiral knot and p is a prime with
p ≡ 3 mod 4. Then either p does not divide det(K) or p2 divides det(K).

In fact Goeritz showed an even stronger statement: given such p the maximal power
of p that divides det(K) is even. This elegant and rather effective result of Goeritz also
appears in Reidemeister’s classic textbook on knot theory [Re74, p. 30] from the 1930s,
but it did not appear in any of the more modern textbooks.

In the following we present some examples which show the strength of the Goeritz
theorem and we also show that our Theorem 1.1 is independent of the Goeritz theorem.

Example.

(i) For the trefoil 31 we have det(31) = 3, so Corollary 1.2 immediately implies the very
well known fact that the trefoil is not amphichiral. In most modern accounts of
knot theory one uses either the signature of a knot or the Jones polynomial applied
to prove that the trefoil is not amphichiral. We think that it is worth recalling that
even the determinant can be used to prove this statement.

(ii) As a reality check, consider the figure eight knot 41, which is amphichiral [BZH14,
p. 17]. We have det(41) = 5, which is consistent with Corollary 1.2.

(iii) Corollary 1.2 also provides information on occasions when many other, supposedly
more powerful invariants, fail. For example the chirality of the knot K = 1071

is difficult to detect, since the Tristram-Levine signature function [Le69, Tr69] of
K is identically zero and the HOMFLY and Kauffman polynomials of K do not
detect chirality. In fact in [RGK94] Chern-Simons invariants were used to show
that 1071 is not amphichiral. However, a quick look at Knotinfo [CL] shows that
det(1071) = 77 = 7 · 11, i.e. 1071 does not satisfy the criterion from Corollary 1.2
and so we see that this knot is not amphichiral.

(iv) On the other hand it is also quite easy to find a knot for which Corollary 1.2, and
also Theorem 1.1 below, fail to show that it is not amphichiral. For example, the
torus knot T (5, 2) = 51 has determinant det(51) = 5, but is not amphichiral since
its signature is nonzero.

(v) One quickly finds examples of knots where Theorem 1.1 detects chirality, but Corol-
lary 1.2 fails to do so. Consider the Stevedore’s knot 61. A Seifert matrix is given by

A =
(

1 0
1 −2

)
. By the aforementioned formula a presentation matrix for H1(Σ(K))

is given by A + AT . It is straightforward to compute that H1(Σ(K)) ∼= Z9. So
it follows from Theorem 1.1, applied with p = 3, that the Stevedore’s knot is not
amphichiral.

We refer to [Ha80], [CM83, Proposition 1] and [Hi12, Theorem 9.4] for results on
Alexander polynomials of amphichiral knots. In principle these results give stronger
obstructions to a knot being amphichiral than the Goeritz Theorem, but in practice it
seems to us that these obstructions are fairly hard to implement.

To the best of our knowledge Theorem 1.1 is the first obstruction to a knot being
amphichiral that uses the structure of the homology module. We could not find a result
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in the literature that implies Theorem 1.1, essentially because the previous results on
Alexander polynomials mentioned above did not consider the structure of the Alexander
module. Similarly Goeritz [Go33] did not consider the structure of the first homology
for the 2-fold branched cover. So to the best of our knowledge, and to our surprise,
Theorem 1.1 seems to be new. Notwithstanding, the selling point of our theorem is not
that it yields any new information on amphichirality, but that the obstruction is very
fast to compute and frequently effective.

As mentioned above, the proof of Theorem 1.1 relies on the study of the linking form
on the 2-fold branched cover Σ(K). Similarly, as in [Hi12, Theorem 9.3], one can use
the Blanchfield form [Bl57] to obtain restrictions on the primary parts of the Alexander
module. Moreover one can use twisted Blanchfield forms [Po16] to obtain conditions
on twisted Alexander polynomials [Wa94, FV10] and twisted Alexander modules of
amphichiral knots. Our initial idea had been to use the latter invariant. But we quickly
found that even the elementary invariants studied in this paper are fairly successful. To
keep the paper short we refrain from discussing these generalisations.

The paper is organised as follows. Linking forms and basic facts about them are
recalled in Section 2. The proofs of Theorem 1.1 and Corollary 1.2 are given in Section 3.

Acknowledgments. We are indebted to Cameron Gordon, Chuck Livingston and Loren-
zo Traldi for pointing out the paper of Goeritz [Go33], which contains Corollary 1.2.
Despite a fair amount of literature searching before we posted the first version, we did
not come across this paper. We are pleased that the beautiful result of Goeritz was
brought back from oblivion.
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excellent research atmosphere this paper was born. We are also grateful to Jae Choon
Cha and Chuck Livingston [CL] for providing Knotinfo, which is an indispensable tool
for studying small crossing knots.

The first author acknowledges the support provided by the SFB 1085 ‘Higher Invari-
ants’ at the University of Regensburg, funded by the DFG. The third author is supported
by an NSERC Discovery Grant.

2. Linking forms

Definition.

(i) A linking form on a finitely generated abelian group H is a map λ : H×H → Q/Z
which has the following properties:
(a) λ is bilinear and symmetric,
(b) λ is nonsingular, that is the adjoint map H → Hom(H,Q/Z) given by a 7→

(b 7→ λ(a, b)) is an isomorphism.
(ii) Given a linking form λ : H ×H → Q/Z we denote the linking form on H given by

(−λ)(a, b) = −λ(a, b) by −λ.
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Lemma 2.1. Let p be a prime and n ∈ N0. Every linking form λ on Zpn is given by

Zpn × Zpn → Q/Z
(a, b) 7→ λ(a, b) = k

pna · b ∈ Q/Z

for some k ∈ Z that is coprime to p.

Proof. Pick k ∈ Z such that k
pn

= λ(1, 1) ∈ Q/Z. By the bilinearity we have λ(a, b) =
k
pn
a · b ∈ Q/Z for all a, b ∈ Zpn . It follows easily from the fact that λ is nonsingular that

k needs to be coprime to p. To wit, if p|k then k = p · k′, so for any a ∈ pn−1Zpn and
b ∈ Zpn we have λ(a, b) = k′apb/pn−1 = 0 ∈ Q/Z. Therefore the non-trivial subgroup
pn−1Zpn lies in the kernel of the adjoint map, so the adjoint map is not injective. �

We recall the following well known lemma.

Lemma 2.2. Let λ : H × H → Q/Z be a linking form and let p be a prime. The
restriction of λ to the p-primary part Hp of H is also nonsingular.

Proof. It suffices to show that there exists an orthogonal decomposition H = Hp ⊕H ′.
Since H is the direct sum of its p-primary subgroups we only need to show that if p, q
are two different primes and if a ∈ Hp and b ∈ Hq, then λ(a, b) = 0. So let p and q be
two distinct primes. Since p and q are coprime there exist x, y ∈ Z with px+ qy = 1. It
follows that λ(a, b) = λ((px+ qy)a, b) = λ(pxa, b) + λ(a, qyb) = 0. �

Let Σ be an oriented rational homology 3-sphere, i.e. Σ is a 3-manifold withH∗(Σ;Q) ∼=
H∗(S

3;Q). Consider the maps

H1(Σ;Z)
PD−1

−−−→ H2(Σ;Z)
δ←− H1(Σ;Q/Z)

ev−→ Hom(H1(Σ;Z),Q/Z),

where the maps are given as follows:

(1) the first map is given by the inverse of Poincaré duality, that is the inverse of the
map given by capping with the fundamental class of the oriented manifold Σ;

(2) the second map is the connecting homomorphism in the long exact sequence in
cohomology corresponding to the short exact sequence 0→ Z→ Q→ Q/Z→ 0
of coefficients; and

(3) the third map is the evaluation map.

The first map is an isomorphism by Poincaré duality, the second map is an isomor-
phism since Σ is a rational homology sphere and so H i(Σ;Q) = H3−i(Σ;Q) = 0 for
i = 1, 2, and the third map is an isomorphism by the universal coefficient theorem, and
the fact that Q/Z is an injective Z-module. Denote the corresponding isomorphism by
ΦΣ : H1(Σ;Z)→ Hom(H1(Σ;Z),Q/Z) and define

λΣ : H1(Σ;Z)×H1(Σ;Z) → Q/Z
(a, b) 7→ (ΦΣ(a))(b).

Lemma 2.3. For every oriented rational homology 3-sphere Σ, the map λΣ is a linking
form.
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Proof. We already explained why ΦΣ is an isomorphism, which is equivalent to the
statement that λΣ is nonsingular. Seifet [Se33, p. 814] gave a slightly non-rigorous proof
that λΣ is symmetric, more modern proofs are given in [Po16] or alternatively in [Fr17,
Chapter 48.3]. �

The following lemma is an immediate consequence of the definitions and the obvious
fact that for an oriented manifold M we have [−M ] = −[M ].

Lemma 2.4. Let Σ be an oriented rational homology 3-sphere. We denote the same
manifold but with the opposite orientation by −Σ. For any a, b ∈ H1(Σ;Z) = H1(−Σ;Z)
we have

λ−Σ(a, b) = −λΣ(a, b).

Let K ⊂ S3 be a knot and let Σ(K) be the 2-fold cover of S3 branched along K.
Note that Σ(K) admits a unique orientation such that the projection p : Σ(K)→ S3 is
orientation-preserving outside of the branch locus p−1(K). Henceforth we will always
view Σ(K) as an oriented manifold.

Lemma 2.5.

(i) Let K and J be two knots. If K and J are (smoothly) isotopic, then there exists
an orientation-preserving diffeomorphism between Σ(K) and Σ(J).

(ii) Let K be a knot. There exists an orientation-reversing diffeomorphism Σ(K) →
Σ(mK).

Proof. The first statement follows immediately from the isotopy extension theorem [Ko93,
Theorem II.5.2]. The second statement is an immediate consequence of the defini-
tions. �

3. Proofs

3.1. Proof of Theorem 1.1. Let K be a knot and let p be a prime. By Lemma 2.5 (ii)
there exists an orientation-preserving diffeomorphism f : Σ(K)→ −Σ(mK) which means
that f induces an isometry from λΣ(K) to λ−Σ(mK). It follows from Lemma 2.4 that f
induces an isometry from the linking form λΣ(K) to −λΣ(mK). In particular f induces
an isomorphism H1(Σ(K);Z)p → H1(Σ(mK);Z)p between the p-primary parts of the
underlying abelian groups.

Now suppose that K is amphichiral, meaning that mK is isotopic to K. Write H =
H1(Σ(K)), denote the p-primary part of H by Hp, and let λp : Hp ×Hp → Q/Z be the
restriction of the linking form λΣ(K) to Hp. It follows from Lemma 2.2 that λp is also a
linking form. Then by Lemma 2.5 (ii) and the above discussion, there exists an isometry

Φ: (Hp,−λp)
∼=−→ (Hp, λp).

Now suppose that Hp is cyclic and nonzero, so that we can make the identification
Hp = Zpn for some n ∈ N. By Lemma 2.1, there exists a k ∈ Z, coprime to p, such that
λp(a, b) = k

p
ab ∈ Q/Z for all a, b ∈ Zpn .
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The isomorphism Φ: Zpn → Zpn is given by multiplication by some r ∈ Z that is
coprime to p. We have that

− k
pn = (−λp)(1, 1) = λp(r · 1, r · 1) = k

pn r
2 ∈ Q/Z.

Thus there exists m ∈ Z such that − k
pn = k

pn r
2 +m ∈ Z, so −k = kr2 + pnm. Working

modulo p we obtain −k ≡ kr2 mod p. Since k is coprime to p, it follows that −1 ≡ r2

mod p.
But it is a well known fact from classical number theory, see e.g. [Co09, p. 133], that

for an odd prime p the number −1 is a square mod p if and only if p ≡ 1 mod 4. Thus
we have shown that for an amphichiral knot, and a prime p such that Hp is nontrivial
and cyclic, we have that p ≡ 1 mod 4. This concludes the proof of (the contrapositive
of) Theorem 1.1.

3.2. The proof of Corollary 1.2. Let K be an amphichiral knot. Recall that by
definition of the determinant we have det(K) = |H1(Σ(K))|. Now let p be a prime with
p ≡ 3 mod 4 that divides det(K). We have to show that p2 divides det(K). Denote the
p-primary part of H1(Σ(K)) by Hp. Since p divides det(K), we see that Hp is nonzero.
By Theorem 1.1, we know that Hp is not cyclic. But this implies that p2 divides the
order of Hp, which in turn implies that p2 divides det(K). This concludes the proof of
Corollary 1.2.
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E-mail address: mark@cirget.ca


	1. Introduction
	Acknowledgments.

	2. Linking forms
	3. Proofs
	3.1. Proof of Theorem 1.1
	3.2. The proof of Corollary 1.2

	References

