
TWISTED ALEXANDER INVARIANTS DETECT TRIVIAL LINKS

STEFAN FRIEDL AND STEFANO VIDUSSI

Abstract. It follows from earlier work of Silver–Williams and the authors that
twisted Alexander polynomials detect the unknot and the Hopf link. We now show
that twisted Alexander polynomials also detect the trefoil and the figure-8 knot,
that twisted Alexander polynomials detect whether a link is split and that twisted
Alexander modules detect trivial links.

1. Introduction and main results

An (oriented) m-component link L = L1 ∪ · · · ∪ Lm ⊂ S3 is a collection of m
disjoint smooth oriented closed circles in S3. Given such link L we denote by ϕL the
canonical epimorphism π1(S

3 \ L) → ⟨t⟩ which is given by sending each meridian to
t. Given a representation α : π1(S

3 \ L) → GL(k,C) we will introduce in Section 2.1

the corresponding twisted Alexander C[t±1]–module Hα⊗ϕL
1 (S3 \ L;C[t±1]k).

The purpose of this paper is to discuss to what degree the collection of twisted
Alexander modules detects various types of links. The model example is the follow-
ing: We can extract information from these modules by looking at their order; in
particular, following Lin [Lin01] and Wada [Wa94] we can define the one–variable
twisted Alexander polynomial ∆α

L ∈ C[t±1]. Silver and Williams [SW06] proved that
the collection of twisted Alexander polynomials detects the trivial knot among 1–
component links, i.e. knots. More precisely, if L ⊂ S3 is a knot, then L is the unknot
if and only if ∆α

L = 1 for all representations α : π1(S
3 \ L) → GL(k,C).

We thus see that twisted Alexander polynomials detect the unknot, and in a similar
vein we showed in [FV07] that twisted Alexander polynomials detect the Hopf link.
It is natural to ask whether twisted Alexander modules characterize other classes of
knots and links. The purpose of this paper is to discuss a number of cases where the
answer is affirmative. We will present now the main results, referring to the following
sections for the precise statements. Our first result is Theorem 3.1 which significantly
improves upon [FV07, Theorem 1.3] and which can be summarized as follows.

Theorem 1.1. Twisted Alexander polynomials detect the trefoil and the figure-8 knot.
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The second result asserts that twisted Alexander modules detect split links (recall
that a link L is split if there exists a 2-sphere S ⊂ S3 such that each component of
S3 \ S contains at least one component of L).

In order to state the result we need two more definitions. First, we denote by
rk(L, α) the rank of the twisted Alexander module, i.e.

rk(L, α) := rkC[t±1]H
α⊗ϕL
1 (S3 \ L;C[t±1]k).

Secondly, in this paper we say that a representation α : π1(S
3 \ L) → GL(k,C) is an

almost-permutation representation if given any g the matrix α(g) has precisely one
non-zero value in each row and each column, and each non-zero entry is a root of
unity.

We now have the following result.

Theorem 1.2. If a link L is split, then for any representation α : π1(S
3 \ L) →

GL(k,C) we have rk(L, α) > 0. Conversely, if L is not split, then there exists a
representation α : π1(S

3 \ L) → GL(k,C) with rk(L, α) = 0. Furthermore the repre-
sentation can be assumed to be an almost-permutation representation.

(A more detailed result, relating rk(L, α) with the splittability of L, is presented
in Section 2.1.)

Note that the condition rk(L, α) > 0 is equivalent to the vanishing of ∆α
L. The

first statement of the theorem thus also asserts that twisted Alexander polynomial
cannot distinguish inequivalent split links, in particular they fail to characterize the
trivial link with more than one component. However, whenever the twisted Alexander
module is not torsion, we can define a secondary invariant, defined as the order of
the torsion part of the twisted Alexander module. More precisely we consider the
following invariant:

∆̃α
L := ordC[t±1]

(
TorC[t±1]H

α⊗ϕL
1 (S3 \ L;C[t±1]k)

)
.

(We refer to Section 2.1 for details.) We can now formulate our third main result.

Theorem 1.3. An m-component link L is trivial if and only if for any almost-
permutation representation α : π1(S

3 \ L) → GL(k,C) we have rk(L, α) = k(m − 1)
and ∆̃α

L = 1.

In order to prove the theorems above we will build on the results of [FV13, FV12],
where we showed that twisted Alexander polynomials determine the Thurston norm
and detect the existence of fibrations for irreducible 3–manifolds with non–empty
toroidal boundary. These results in turn rely on the virtual fibering theorem of Agol
[Ag08] and the work of Wise and Przytycki-Wise [Wi09, Wi12a, Wi12b, PW12].

Remark. Note that if L is non-split or non-trivial, there exists not only an almost-
permutation presentations π1(S

3 \ L) → GL(k,C) which has the desired property,
but there also exists a rational representation π1(S

3 \L) → GL(k,Q) with the desired
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twisted Alexander module. This is an immediate consequence of the proofs and of
Remark 2 on page 2 of [FV12]. We leave the straightforward verification to the reader.

In Section 5 we will show that the invariants rk(L, α) and ∆̃α
L can be computed

efficiently for almost-permutation representations. We will use this result to then
show that Theorems 1.2 and 1.3 give rise to algorithms for detecting split links and
for detecting unlinks. We will also indicate how these algorithms can be used for
determining the splitting number of a link as defined by Batson–Seed [BS13].

We conclude this introduction with some observations tying in the results above
with some group–theoretic aspects. First, the fact that twisted Alexander polynomials
detect the unknot and the Hopf link is perhaps not entirely surprising, as these are
the only links whose fundamental group is abelian. Instead, the fundamental group
of any non–trivial knot is non–abelian, hence detection of the trefoil and the figure-8
knot requires far deeper results. Similarly, the unlink is characterized by the fact that
π1(S

3 \L) is a free group, but in general it is difficult to distinguish a non-cyclic free
group from other non-abelian groups. (We refer to [AFW12] and references therein for
a survey on 3-manifold groups, from which these observations can be easily deduced.)

Convention. Unless specified otherwise, all spaces are assumed to be compact and
connected, and links are assumed to be oriented. Furthermore all groups are assumed
to be finitely presented.

Acknowledgment. The first author wishes to thank IISER Pune for its generous
hospitality. The authors are also grateful to Jae Choon Cha and Mark Powell for
helpful discussions.

2. Preliminaries

2.1. The definition of twisted Alexander modules and polynomials. In this
section we quickly recall the definition of the twisted Alexander modules and polyno-
mials for links, referring to [Tu01, Hi02, FV10] for history, details and generalizations.

Let L ⊂ S3 be an oriented m–component link. Consider the canonical morphism
ϕL : π1(S

3 \ L) → Z = ⟨t⟩ sending the meridian of each component to t and let
α : π1(S

3 \ L) → GL(k,C) be a representation. Using the tensor representation

α⊗ ϕL : π1(S
3 \ L) → GL(k,C[t±1])

g 7→ α(g) · ϕL(g)

we can define the homology groups Hα⊗ϕL
∗ (S3 \ L;C[t±1]k) of S3 \ L with coefficients

in C[t±1]k, which inherit from the system of coefficients an action of C[t±1] and, as
C[t±1] is a PID, are finitely presented as C[t±1]–modules. We refer to these modules
as twisted Alexander modules of (L, α).
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We now recall that any finitely generated C[t±1]-module H can be written as

H = C[t±1]r ⊕
s⊕

i=1

C[t±1]/pi(t)

with pi(t) ̸= 0, i = 1, . . . , s. We then refer to rkC[t±1](H) := r as the rank of H and
we refer to ordC[t

±1](H) :=
∏s

i=1 pi(t) as the order of H. Returning to the twisted
Alexander modules we now define

∆α
L,i := ordC[t±1]H

α⊗ϕL
i (S3 \ L;C[t±1]k),

∆̃α
L,i := ordC[t±1]TorC[t±1]H

α⊗ϕL
i (S3 \ L;C[t±1]k),

rk(L, α, i) := rkC[t±1]H
α⊗ϕL
i (S3 \ L;C[t±1]k).

We refer to ∆α
L,i as the i–th twisted Alexander polynomial of (L, α). Note that ∆α

L,i ∈
C[t±1] and ∆̃α

L,i ∈ C[t±1] are well-defined up to multiplication by a unit in C[t±1].
Throughout the paper, whenever we have an equation of the form ∆α

L,i = f(t) or

∆α
L,i = f(t) for some f(t) ∈ C[t±1] this equality is understood up to the indeterminacy

of the left-hand side, i.e. up to multiplication by a unit in C[t±1].
(Throughout this paper we drop the i from the notation when i = 1, and drop α

from the notation if α is the trivial one-dimensional representation over C.)
We conclude this section with an elementary observation. Let α : π1(S

3 \ L) →
GL(k,C) and β : π1(S

3 \ L) → GL(l,C) be two representations. We can then also
consider the diagonal sum representation α⊕β : π1(S

3 \L) → GL(k+ l,C). It follows
immediately from the definitions that

(1) ∆α⊕β
L,i = ∆α

L,i ·∆
β
L,i.

2.2. Degrees of twisted Alexander polynomials and the 0-th twisted Alexan-
der polynomial. We will make use of the following lemma.

Lemma 2.1. Let L ⊂ S3 be a link and let α : π1(S
3 \ L) → GL(k,C) be a represen-

tation, then Hα⊗ϕL
0 (S3 \ L;C[t±1]k) is C[t±1]-torsion and

deg(∆α
L,0) ≤ k.

Proof. Recall that if X is a space and γ : π1(X) → Aut(V ) a representation, then it
is well-known (see e.g. [HS97, Section VI]) that

(2) Hγ
0 (X;V ) = V/{(γ(g)− idk)v | g ∈ π1(X) and v ∈ V }.

In particular in our case, we pick g ∈ π1(S
3 \ L) such that ϕL(g) = t. It then follows

from (2) and the definition of the Alexander polynomial that

∆α
L,0 | det((α⊗ ϕL)(g)− idk).

Note that (α⊗ ϕL)(g) = α(g)t, in particular

det((α⊗ ϕL)(g)− idk) = det(α(g)t− idk) = det(α(g))tk + · · ·+ (−1)k
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is a polynomial of degree k. It now follows that ∆α
L,0 ̸= 0 and that

deg∆α
L,0 ≤ deg (α(g)t− idk)) = k.

�

2.3. Almost-permutation representation. Amatrix in GL(k,C) is called an almost-
permutation matrix if in each row and each column it has precisely one value which
is non-zero, and if all non-zero entries are roots of unity. We then say that a rep-
resentation α : π → GL(k,C) is an almost-permutation representation if given any g
the matrix α(g) is an almost-permutation matrix.

Lemma 2.2. Any almost-permutation representation factors through a finite group.

Proof. Let α : π → GL(k,C) be an almost-permutation representation. We first pick a
finite generating set for π. We denote by n the least common multiple of the orders of
the roots of unity which appear as the non-zero entries of α applied to the generating
set. It is straightforward to see that any non-zero entry of any α(g) is now an n-th
root of unity.

Given g ∈ π we denote by β(g) the matrix which is given by replacing all non-
zero entries in α(g) by 1. It is straightforward to see that g 7→ β(g) also defines
representation with Ker(α) ⊂ Ker(β). Note that the image of β is a subgroup of the
permutation group Sk, it thus follows that Ker(β) is subgroup of finite index of π.

Furthermore, note that α assigns to each element g ∈ Ker(β) a diagonal matrix.
By the above we know that now each matrix α(g) with g ∈ Ker(β) has order n. It
thus follows that Ker(α) is a subgroup of finite index in π. �

2.4. The Thurston norm, fibered classes and twisted Alexander polynomi-
als. Let L ⊂ S3 be an oriented m–component link. Recall that the link L is fibered
if its complement can be fibered over S1 by Seifert surfaces of the link. (Note that,
when m ≥ 2, this is stronger than the requirement that S3 \ L admits a fibration:
precisely, it is equivalent to requiring that the class of H1(S3 \ L;Z) determined by
the canonical morphism ϕL : π1(S

3 \ L) → ⟨t⟩ is fibered.)
In the following, given a class ϕ ∈ H1(S3 \ νL;Z) we denote by ∥ϕ∥T its Thurston

norm [Th86]. Recall that this is defined as the minimal complexity of a surface dual
to ϕ, more precisely, it is defined as

∥ϕ∥T := min

{
m∑
i=1

max{0,−χ(Si)}
∣∣∣∣ S1 ∪ · · · ∪ Sm properly embedded surface
dual to ϕ with S1, . . . , Sm connected

}
.

For example, if K is a non-trivial knot and ϕK ∈ H1(S3 \K;Z) is a generator, then

∥ϕK∥T = 2genus(K)− 1.

For a link we can thus view ∥ϕL∥T as a generalization of the notion of the genus of a
knot.
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The following theorem is a consequence of Theorems 1.1 and 1.2, Proposition 2.5
and Lemma 2.8 of [FK06] (see also [Fr12] for an alternative proof).

Theorem 2.3. Let L ⊂ S3 be an oriented m–component link and α : π1(S
3 \ L) →

GL(k,C) a representation such that ∆α
L ̸= 0. Then

(3) max{0, deg∆α
L − deg∆α

L,0} ≤ k∥ϕL∥T .
Furthermore, if L is a fibered link, then ∆α

L ̸= 0 and (3) is an equality.

The above theorem thus says that degrees of twisted Alexander polynomials give
lower bounds on the Thurston norm of ∥ϕL∥T and that they determine it for fibered
links. Using work of Agol [Ag08], Liu [Liu11], Przytycki–Wise [PW11, PW12] and
Wise [Wi09, Wi12a, Wi12b] the authors proved in [FV13, Theorem 1.1] and [FV12,
Theorem 5.9] that twisted Alexander polynomials decide the fiberability and deter-
mine the Thurston norm of ∥ϕL∥T of a non-split link. Specifically we have the fol-
lowing:

Theorem 2.4. Let L ⊂ S3 be an oriented m–component link which is non-split. Then
there exists an almost-permutation representation α : π1(S

3\L) → GL(k,C) such that
∆α

L ̸= 0 and such that

max{0, deg∆α
L − deg∆α

L,0} = k∥ϕL∥T .
Furthermore, if L is not fibered, there exists an almost-permutation representation
α′ : π1(S

3 \ L) → GL(k,C) such that

∆α′

L = 0.

Proof. Let L ⊂ S3 be an oriented m–component link which is non-split. Note that
this assumption implies that S3 \ L is irreducible. By [FV12, Theorem 5.9] there
exists an ‘extended character α’ such that for the corresponding twisted Reidemeister
torsion ταL we have deg ταL = k∥ϕL∥T . The first statement of the theorem now follows
from the observation that an ‘extended character’ is an almost-permutation matrix
and the discussion in [FV10, Section 3.3.1] relating twisted Reidemeister torsions to
twisted Alexander polynomials.

The second statement follows immediately from [FV13, Theorem 1.1] and the obser-
vation that a representation α′ : π1(S

3 \L) → GL(k,C) induced by a homomorphism
π1(S

3 \L) → G to a group with |G| = k is in fact an almost-permutation matrix. �
This theorem has the following corollary, whose second part refines one of the main

theorems of [FV07] inasmuch as it asserts the sufficiency of the use of one–variable
twisted Alexander polynomials.

Corollary 2.5. (1) Let K ⊂ S3 be a knot. If K is trivial, then for any repre-
sentation α : π1(S

3 \ K) → GL(k,C) we have ∆α
K = 1. Conversely, if K is

non-trivial, then there exists an almost-permutation representation α : π1(S
3 \

K) → GL(k,C) such that ∆α
K ̸= 1.
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(2) Let L ⊂ S3 be a 2-component link. If L is the Hopf link, then for any repre-
sentation α : π1(S

3 \ L) → GL(k,C) we have

ταL := ∆α
L(∆

α
L,0)

−1 = 1.

Conversely, if L is not the Hopf link, then there exists an almost permutation
representation α : π1(S

3 \ L) → GL(k,C) such that ταL ̸= 1.

The reader may have noticed that the invariant ταL introduced in the statement of
the corollary is, in fact, the twisted Reidemeister torsion; see e.g. [FV10, Section 3.3.1]
for a discussion of this point of view.

Proof. Let K ⊂ S3 be a knot. If K is trivial, then all first twisted homology mod-
ules are zero, hence all twisted Alexander polynomials are equal to 1. Conversely,
if K is non-trivial, then the genus is greater than zero, and it then follows immedi-
ately from Theorem 2.4 that there exists an almost-permutation representation with
corresponding non-constant twisted Alexander polynomial.

Now let L ⊂ S3 be a 2-component link. Then it is well-known that the following
are equivalent:

(a) L is the Hopf link,
(b) S3 \ L ∼= T 2 × I,
(c) L is fibered with ||ϕL||T = 0.

It follows easily from the implication (a) ⇒ (b) that the twisted Alexander modules of
the Hopf link are the homology groups of the infinite cyclic cover T 2 determined by ϕL,
i.e. homotopically a copy of S1. Given any representation α : π1(S

3\L) → GL(k,C) it
follows that ταL = 1 (we refer to [KL99, p. 644] for details). Now suppose that L is not
the Hopf link. Then ϕL is either not fibered or ||ϕL||T > 0. It follows from Theorem
2.4 that there exists an almost-permutation representation α : π1(S

3 \L) → GL(k,C)
such that ∆α

L is either zero or such that

deg(∆α
L)− deg(∆α

L,0) > 0.

Either way, ταL ̸= 1. �

3. Proofs of the main results

3.1. Twisted Alexander polynomials detect the trefoil and the figure-8
knot. The following theorem is the promised more precise version of Theorem 1.1.

Theorem 3.1. Let K be a knot. Then K is equivalent to the trefoil knot (the figure-8
knot respectively) if and only if the following conditions hold:

(1) ∆K = 1− t+ t2 (∆K = 1− 3t+ t2 respectively)
(2) for any almost permutation representation α : π1(S

3 \K) → GL(k,C) we have

∆α
K ̸= 0 and deg∆α

K ≤ 2k.
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Proof. Let K be the trefoil knot or the figure-8 knot. It is well known that in the
former case ∆K = 1− t+ t2 and that in the latter case ∆K = 1−3t+ t2. Note that in
either case K is a fibered genus one knot. It now follows from Theorem 2.4 that for
any almost-permutation representation α : π1(S

3 \K) → GL(k,C) we have ∆α
K ̸= 0

and that
deg∆α

K − deg∆α
K,0 = k(2 genus(K)− 1) = k.

We deduce from Lemma 2.1 that deg∆α
K,0 ≤ k. We thus obtain the desired inequality

deg∆α
K ≤ 2k.

This concludes the proof of the ‘only if’ direction of the theorem.
Now suppose that K is a knot such that for any almost-permutation representation

α : π1(S
3 \K) → GL(k,C) we have

∆α
K ̸= 0 and deg∆α

K ≤ 2k.

It follows from Theorem 2.4 that K is fibered and that the genus of K equals one.
From [BZ85, Proposition 5.14] we deduce that K is equivalent to either the trefoil
knot or the figure-8 knot. The ‘if’ direction of the theorem now follows from the fact
mentioned above that the ordinary Alexander polynomial distinguishes the trefoil
knot from the figure-8 knot. �
3.2. Split links. We say that a link L is s-splittable if there exist s disjoint 3-balls
B1, . . . , Bs ⊂ S3 such that each Bi contains at least one component of L and such
that S3 \ (B1 ∪ · · · ∪Bs) also contains a component of L. Furthermore we say that L
is s-split if L is s-splittable but not (s+ 1)-splittable.

The following theorem implies in particular Theorem 1.2.

Theorem 3.2. Let L ⊂ S3 be an oriented m–component link. Then the following
hold:

(1) If L is s-splittable, then for any representation α : π1(S
3 \ L) → GL(k,C) we

have
rk(L, α) ≥ sk.

(2) If L is s-split, then there exists an almost-permutation representation α : π1(S
3\

L) → GL(k,C) such that

rk(L, α) = sk.

Proof. Denote as usual by ϕL : π1(S
3\L) → ⟨t⟩ the map which is given by sending each

meridian to t. By slight abuse of notation, we will also denote by ϕL the restriction
of ϕL to any subset of S3 \ L.

Suppose that L ⊂ S3 is an s-splittable link. We pick disjoint 3-balls B1, . . . , Bs ⊂
S3 such that each Bi contains at least one component of L and such that B0 :=
S3 \ (B1 ∪ · · · ∪ Bs) also contains a component of L. For i = 1, . . . , s we write
Si := ∂Bi and for i = 0, . . . , s we write Li := L∩Bi. By assumption Li is non-empty
for any i.
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Now let α : π1(S
3 \ L) → GL(k,C) be a representation. We consider the following

Mayer-Vietoris sequence
s⊕

i=1

H1(Si;C[t±1]k) →
s⊕

i=0

H1(Bi \ Li;C[t±1]k) → H1(S
3 \ L;C[t±1]k) →

→
s⊕

i=1

H0(Si;C[t±1]k) →
s⊕

i=0

H0(Bi \ Li;C[t±1]k) → . . .

where the representation is given by α ⊗ ϕL in each case. Note that the restriction
of α⊗ ϕL to π1(Si), i = 1, . . . , s is necessarily trivial, but that the restriction of ϕL

to π1(Bi \ Li), i = 0, . . . , s is non-trivial since Li consists of at least one component.
It follows immediately from the definition of homology with coefficients that for i =
1, . . . , s we have H0(Si;C[t±1]k) ∼= C[t±1]k and H1(Si;C[t±1]k) ∼= 0.

Finally note that for i = 0, . . . , s and j = 0, 1 we have inclusion induced isomor-
phisms

Hj(Bi \ Li;C[t±1]k)
∼=−→ Hj(S

3 \ Li;C[t±1]k).

This entails, by Lemma 2.1 that for i = 0, . . . , s the modules H0(Bi \ Li;C[t±1]k) are
torsion C[t±1]-modules. We thus see that the above Mayer-Vietoris sequence gives
rise to an exact sequence

(4) 0 →
s⊕

i=0

H1(S
3 \ Li;C[t±1]k) → H1(S

3 \ L;C[t±1]k) → C[t±1]ks → T

where T is a torsion C[t±1]-module. In particular we now deduce that

rk(L, α) = rkC[t±1]

(
H1(S

3 \ L;C[t±1]k)
)
≥ rkC[t±1] C[t±1]ks = ks.

This concludes the proof of (1).
We now suppose that L is in fact an s-split link. Note that we have a canonical

homeomorphism
S3 \ L ∼= S3 \ L0# . . . #S3 \ Ls.

The links Li ⊂ S3, i = 0, . . . , s, are non-split by definition of an s-split link. It
follows from Theorem 2.4 that for i = 0, . . . , s there exists an almost-permutation
representation αi : π1(S

3 \ Li) → GL(ki,C) such that ∆αi
Li

̸= 0. We now denote by
k the greatest common divisor of the ki. After replacing αi by the diagonal sum of
k/ki-copies of the representation αi we can in light of (1) assume that in fact k = ki,
i = 0, . . . , s. We now denote by

α : π1(S
3 \ L) → GL(k,C)

the unique representation which has the property that for i = 0, . . . , s the restriction
of α to π1(Bi \Li) agrees with the restriction of αi to π1(Bi \Li). Note that α is again
an almost-permutation representation. By the above the modules H1(S

3 \L;C[t±1]k)
are C[t±1]-torsion modules. It now follows from (4) that

rk(L, α) = rkC[t±1]

(
H1(S

3 \ L;C[t±1]k)
)
= rkC[t±1]C[t±1]ks = ks.
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This concludes the proof of (2). �
3.3. Detecting unlinks. We finally turn to the problem of detecting unlinks. The
following well-known lemma gives a purely group-theoretic characterization of unlinks.

Lemma 3.3. A link L is trivial if and only if π1(S
3 \ L) is a free group.

Proof. The ‘only if’ direction is obvious. So suppose that L = L1 ∪ · · · ∪ Lm is an
m-component link such that π1(S

3 \ L) is a free group. We have to show that each
Li bounds a disk in the complement of the other components. We denote by Ti the
torus which is the boundary of a tubular neighborhood around Li. It is well-known
that the kernel of H1(Ti) → H1(S

3 \ L) is spanned by the longitude λi of Li. Since
π1(S

3 \ L) is a free group and since every abelian subgroup of a free group is cyclic
it now follows easily that the longitude also lies in the kernel of π1(Ti) → π1(S

3 \ L).
By Dehn’s lemma (see [He76, Chapter 4]) longitude bounds in fact an embedded disk
in S3 \ L. �

Note that if a finitely presented group is free, then one can show this using Tietze
moves. On the other hand there is in general no algorithm for showing that a finitely
presented group is not a free group. Our main theorem now gives in particular an
algorithm for showing that a given link group is not free.

Theorem 3.4. An m-component link L is the trivial link if and only if for any almost-
permutation representation α : π1(S

3 \ L) → GL(k,C) we have rk(L, α) = k(m − 1)
and ∆̃α

L = 1.

Proof. The proof of the ‘only if’ statement is very similar to the proof of Theorem 3.2
(1). In fact it follows easily from (4) that for the m-component trivial link L and a
representation α : π1(S

3 \L) → GL(k,C) we have H1(S
3 \L;C[t±1]k) ∼= C[t±1]k(m−1).

In particular rk(L, α) = k(m− 1) and ∆̃α
L = 1.

We now suppose that L = L0∪· · ·∪Lm−1 is anm-component link such that for every
almost-permutation representation α : π1(S

3 \ L) → GL(k,C) we have rk(L, α) =
k(m−1). It follows immediately from Theorem 3.2 (2) that L is an (m−1)-split link.
We can therefore pick disjoint 3-balls B1, . . . , Bm−1 ⊂ S3 such that each Bi contains
a component of L and such that B0 := S3 \ (B1∪ · · · ∪Bs) also contains a component
of L. Without loss of generality we can assume that for i = 0, . . . ,m − 1 we have
Li = L ∩Bi. For i = 1, . . . ,m− 1 we furthermore write Si := ∂Bi.

It remains to show that if one of the components Li is not the unknot, then there
exists an almost-permutation representation α : π1(S

3 \L) → GL(k,C) with ∆̃α
L ̸= 1.

So we now suppose that L0 is not the unknot. It follows from Theorem 2.4 and
from Corollary 2.5 that for i = 0, . . . ,m − 1 there exists an almost-permutation
representation αi : π1(S

3 \ Li) → GL(ki,C) such that ∆αi

S3\Li
̸= 0 and such that

∆α0

S3\L0
is not a constant. As in the proof of Theorem 3.2 we can assume that k :=

k0 = · · · = km−1. We then denote by

α : π1(S
3 \ L) → GL(k,C)
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the unique representation which has the property that for i = 0, . . . ,m − 1 the re-
striction of α to π1(Bi \Li) agrees with the restriction of αi to π1(Bi \Li). Note that
α is again an almost-permutation representation.

It now follows from (4) that

TorC[t±1](H1(S
3 \ L;C[t±1]k)) ∼= TorC[t±1]

(
m−1⊕
i=0

H1(S
3 \ Li;C[t±1]k)

)
.

We now conclude that

∆̃α
L = ordC[t±1]

(
TorC[t±1](H1(S

3 \ L;C[t±1]k))
)

= ordC[t±1]

(
TorC[t±1]

(
m−1⊕
i=0

H1(S
3 \ Li;C[t±1]k)

))
=

m−1∏
i=0

ordC[t±1]

(
TorC[t±1]

(
H1(S

3 \ Li;C[t±1]k)
))

=
m−1∏
i=0

ordC[t±1]

(
H1(S

3 \ Li;C[t±1]k)
)

=
m−1∏
i=0

∆α
Li

=
m−1∏
i=0

∆αi
Li
.

But this is not a constant since ∆α0
L0

is not a constant. �

4. Extending the results

Let L be an s-split. We pick disjoint 3-balls B1, . . . , Bs ⊂ S3 such that each Bi

contains a component of L and such that B0 := S3 \ (B1 ∪ · · · ∪ Bs) also contains a
component of L. For i = 0, . . . , s we write Li := L ∩ Bi. We then view L0, . . . , Ls as
links in S3. This set of links are called the split-components of L. It is well-known
that the set of split-components is well-defined and does not depend on the choice of
the B1, . . . , Bs.

As a consequence of the proofs of Corollary 2.5, Theorems 1.3 and 3.1, it is rather
straightforward to see that twisted Alexander modules determine any s-split link such
that each of the split-components is either the unknot, the trefoil, the figure-8 knot
or the Hopf link.

This result now begs the following question:

Question 4.1. Are there any other links which are determined by twisted Alexander
modules?

We in fact propose the following conjecture.

Conjecture 4.2. Any torus knot is detected by twisted Alexander polynomials.
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Note that torus knots are fibered, and that twisted Alexander polynomials detect
fibered knots. It thus remains to detect torus knots among the class of fibered knots.
A positive answer to [Ko12, Question 7.1] would come close to proving the conjecture.

5. An algorithm for detecting unlinks and split links

In this section we will first outline how the invariants ∆̃α
L,i and rk(L, α, i) for i = 0, 1

can be calculated efficiently for almost-permutation representations of link groups.
We will then show that Theorems 3.4 and Theorem 3.2 give rise to algorithms for
detecting whether a given link is the unlink or a split link. Finally we outline some
applications to determining the unlinking and the splitting number of a link.

5.1. Computing the invariants for almost-permutation representations. Let
L be a link and let α : π := π1(S

3 \ L) → GL(k,C) be an almost-permutation repre-
sentation. We denote by ϕ : π → Z the canonical epimorphism sending each meridian
to 1. In the proof of Lemma 2.2 we saw that there exists an n such that α takes
values in GL(k,F) with F = Q(e2πi/n). Note that C[t±1] is flat over F[t±1], i.e. we
have a canonical isomorphism

Hα⊗ϕ
i (S3 \ L;C[t±1]k) ∼= Hα⊗ϕ

i (S3 \ L;F[t±1]k)⊗F[t±1] C[t±1]

of C[t±1]-modules. It thus follows that

∆̃α
L,i = ordF[t±1]TorF[t±1]H

α⊗ϕ
i (S3 \ L;F[t±1]k),

rk(L, α, i) = rkF[t±1]H
α⊗ϕ
i (S3 \ L;F[t±1]k).

Let ⟨g1, . . . , gm | r1, . . . , rn⟩ be a presentation for π. After possibly adding trivial
relators we can and will assume that n ≥ m− 1. We denote by X the corresponding
2-complex with one 0-cell, k 1-cells and n 2-cells and we identify π1(X) with π. In
the following we extend the tensor representation α⊗ ϕ : π = π1(X) → GL(k,F[t±1])
to a representation Z[π] → M(k,F[t±1]) which we also denote by α⊗ϕ. Furthermore,
given an r × s-matrix A over Z[π] we denote by (α⊗ ϕ)(A) the rk × sk-matrix over
F[t±1] which is given by applying α⊗ ϕ to each entry of A. For i = 1, . . . ,m we now
denote by

∂

∂i
: Z[π] → Z[π]

the i-th Fox derivative (where we follow the convention of [Ha05, Section 6]). The
twisted chain complex X with coefficients provided by α ⊗ ϕ is then isomorphic to
the chain complex

(5) 0 → F[t±1]nk
(α⊗ϕ)

(
∂rh
∂gi

)
−−−−−−−→ F[t±1]mk (α⊗ϕ)(1−gj)−−−−−−−→ F[t±1]k → 0,

where h = 1, . . . , n, i = 1, . . . ,m and j = 1, . . . ,m. In the following we refer to the
boundary matrix on the left as B1 and to the boundary matrix on the right as B0.
It is well-known that twisted homology modules in dimensions 0 and 1 only depend
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on the fundamental group. We can thus use the chain complex (5) to calculate ∆̃α
L,i,

i = 0, 1 and rk(L, α, 1).
Since F[t±1] is a PID we can appeal to standard algorithms to find a matrix P1 ∈

GL(mk,F[t±1]) such that

B0P1 =
(
0 A0

)
where A0 is a k × k-matrix. It follows from the theory of modules over PIDs that

∆α
L,0 = det(A0).

Note that by Lemma 2.1 we have det(A0) ̸= 0. Also note that the fact that

(B0P1)(P
−1
1 B1) = B0B1 = 0

implies that the last k row of P−1
1 B1 are zero. Again using standard algorithms over

a PID we can find a matrix P2 ∈ GL(nk,F[t±1]) such that

P−1
1 B1P2 =

(
A1 0
0 0

)
where A1 is a diagonal (m− 1)k × (m− 1)k-matrix over F[t±1] with diagonal entries
d1, . . . , d(m−1)k. It then follows from the definitions that

∆̃α
L,1 =

∏
di ̸=0

di and rk(L, α, 1) = #{i | di = 0}.

Finally we point out that since F is a finite extension of Q all these base changes can
be performed by a computer without problems.

5.2. The algorithms.

Theorem 5.1. There exists an algorithm which takes as input a diagram for a link
in S3 and which decides after finitely many steps whether L is the unlink or not.

Note that there are various other ways of detecting the unlink. For example
Ozsváth–Szabó [OS08] showed that Link Floer Homology detects the unlink, and
the combinatorial description of Link Floer Homology in [MOST07] then gives an
algorithm for detecting the unlink.

In a similar vein, Hedden–Ni [HN12, Theorem 1.3] showed that an m-component
link is the unlink if and only if the Khovanov module is isomorphic to F2[x0, . . . , xm−1]/(x

2
0, . . . , x

2
m−1).

In general at least it is difficult though to check whether two F2[x0, . . . , xm−1]-modules
are isomorphic or not.

Proof. Let L = L1 ∪ · · · ∪ Lm ⊂ S3 be a link. We start out with a few observations:

(1) If L is the unlink, then it follows from Reidemeister’s theorem that any di-
agram of L can be turned into the standard diagram of the unlink, using a
finite sequence of Reidemeister moves.
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(2) If L is the unlink, then it follows from Theorem 3.4 that given any almost-
permutation representation α : π1(S

3 \ L) → GL(k,C) we have rk(L, α) =
m(k − 1) and ∆̃α

L ̸= 1.
(3) If L is not the unlink, then it follows from Theorem 3.4 that there exists an

almost-permutation representation α : π1(S
3 \L) → GL(k,C) such that either

rk(L, α) ̸= m(k − 1) or such that ∆̃α
L ̸= 1.

The algorithm consists of two programs running simultaneously:

(1) The first program goes systematically over all finite sequences of Reidemeister
moves applied to the given diagram. We terminate this program once it turned
the given diagram of L into the standard diagram of the unlink. By the above
discussion this program will terminate after finitely many steps if L is the split
link.

(2) The second program first determines aWirtinger presentation ⟨g1, . . . , gk | r1, . . . , rl⟩
for π1(S

3 \ L) from the given link diagram. The program then systematically
goes through all almost-permutation representations of π1(S

3 \ L). This can
be done by going through all assignments of almost-permutation matrices to
the gi and verifying that the relations hold. As we discussed in Section 5.1 it
is possible to calculate rk(L, α) ̸= m(k−1) and ∆̃α

L ̸= 1 for any such represen-
tation α. We terminate the program once we found an almost-permutation
representation α : π1(S

3 \L) → GL(k,C) such that either rk(L, α) ̸= m(k−1)
or such that ∆̃α

L ̸= 1. It follows from the above discussion that this program
will terminate only if L is the unlink, and it will terminate after finitely many
steps if the link is not the unlink.

�

We also have the following theorem.

Theorem 5.2. There exists an algorithm which takes as input a link in S3 and which
decides after finitely many steps whether L is split or not.

Proof. The proof is very similar to the proof of Theorem 5.1. We thus only outline
the changes one has to make in the proof. So let L = L1 ∪ · · · ∪ Lm ⊂ S3 be a link.
We again start out with three observations:

(1) If L is a split link, then it follows from Reidemeister’s theorem that any
diagram of L can be turned into a split diagram, using a finite sequence of
Reidemeister moves. Here we say that a diagram for the link L is split if it
is contained in two disjoint disks such that each disks contains a non-empty
diagram.

(2) If L is a split link, then L is 1-splittable. It follows from Theorem 3.2 that
given any almost-permutation representation α : π1(S

3 \ L) → GL(k,C) we
have rk(L, α) > 0.
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(3) If L is not a split link, then L is 0-split. It follows from Theorem 3.2 that
there exists an almost-permutation representation α : π1(S

3 \ L) → GL(k,C)
such that

rk(L, α) = 0.

As in the proof of Theorem 5.1 we now again run two programs, with the obvious
modifications, one of which will terminate after finitely many steps precisely if L is a
split link and the other will terminate after finitely many steps precisely if L is not a
split link. �

We now say that an m-component link L = L1 ∪ · · · ∪ Lm ⊂ S3 is totally split if it
is (m−1)-split, i.e. if it is the split union of its components. An obvious modification
of the proof of Theorem 5.2 now gives us the following result.

Theorem 5.3. There exists an algorithm which takes as input a link in S3 and which
decides after finitely many steps whether L is totally split or not.

With our present understanding of representations of link groups it is impossible
to give a rigorous estimate for how efficient these algorithms are. But from our
experience, see e.g. [FK06] and [DFJ12], in practice twisted Alexander polynomials
tend to be extremely efficient at detecting fiberedness and the Thurston norm. We
are thus quite confident that twisted Alexander polynomials and modules are very
efficient at showing that a non-trivial link is indeed non-trivial and at showing that
a non-split link is indeed non-split.

5.3. The splitting number. In a recent paper Batson–Seed [BS13] defined the split-
ting number sp(L) of a link L to be the minimal number of crossing changes between
different components which are needed to turn L into a totally split link. (Note that
this differs from the notion of ‘splitting number’ used in [Ad96, Sh12] where crossing
changes between the same component are allowed.)

The splitting number of a link is usually determined by finding upper and lower
bounds on the splitting number. The upper bounds are obtained by performing
crossing changes till one obtains a totally split link. This makes it necessary to have
an efficient algorithm for detecting whether a given link is totally split or not.

The lower bounds on the splitting number usually come from invariants, e.g. Kho-
vanov homology [BS13], linking numbers of covering links and Alexander polynomials
in [CFP13]. We now quickly recall a further lower bound on the splitting number
which was introduced in [CFP13] and which turns out to be very efficient for many
links.

A sublink of a link is called obstructive if it is not totally split and if all the linking
numbers are zero. Given a link L we then define c(L) to be the maximal size of
a collection of distinct obstructive sublinks of L, such that any two sublinks in the
collection have at most one component in common. In [CFP13, Lemma 2.1] it is
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shown that for any link L = L1 ∪ · · · ∪ Lm we have

(6) sp(L) ≥
∑
i>j

| lk(Li, Lj)|+ 2c(L).

For example consider the link L = L1 ∪ L2 ∪ L3 shown in the figure. The sublinks
L1∪L2 and L2∪L3 are non-split links, which can be seen by the observation that their
Alexander polynomials are non-zero. Since L1 ∪ L3 is a split link it now follows that
c(L) = 2. It thus follows from (6) that sp(L) ≥ 4. In order to apply the inequality

L2

L3
L1

(6) one therefore again needs an efficient algorithm for determining whether a given
link is totally split or not.
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