CENTRALIZERS IN 3-MANIFOLD GROUPS
STEFAN FRIEDL

ABSTRACT. Using the Geometrization Theorem we prove a result
on centralizers in fundamental groups of 3-manifolds. This result
had been obtained by Jaco and Shalen and by Johannson using
different techniques.

1. INTRODUCTION

In this paper we will study centralizers in fundamental groups of 3-
manifolds. By a 3-manifold we will always mean a compact, orientable,
connected, irreducible 3-manifold with empty or toroidal boundary.

Let m be a group. The centralizer of an element g € 7 is defined to
be the subgroup

Cr(g) == {h € w[gh = hg}.

Determining centralizers is an important step towards understanding
a group. The goal of this note is to give a new proof of the following
theorem.

Theorem 1.1. Let N be a 3-manifold. We write m = m(N). Let
g € m. If Cr(g) is non-cyclic, then one of the following holds:

(1) there exists a JSJ torus or a boundary torus T and h € 7 such
that g € hmy(T)h™" and such that

Cr(g9) = hm(T)h™ 1,

(2) there exists a Seifert fibered component M and h € m such that
g € hm (M)h™ and such that

Cr(g9) = hCryary(h ' gh)h ™"

If N is Seifert fibered, then the theorem holds trivially, and if N
is hyperbolic, then it follows from well-known properties of hyperbolic
3-manifold groups (we refer to Section 3.1 for details). If N is nei-
ther Seifert fibered nor hyperbolic, then by the Geometrization Theo-
rem NN has a non-trivial JSJ decomposition, in particular /N is Haken,
and in that case the theorem was proved by Jaco and Shalen [6, The-
orem VI.1.6] and independently by Johannson [7, Proposition 32.9].
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In this note we will give an alternative proof of Theorem 1.1 for 3-
manifolds with non-trivial JSJ decomposition using the Geometrization
Theorem proved by Perelman. Our proof involves basic facts about fun-
damental groups of Seifert fibered spaces and hyperbolic 3-manifolds
and it consists of a careful study of the fundamental group of the graph
of groups corresponding to the JSJ decomposition.

In order to determine centralizers of 3-manifolds it thus suffices to
understand centralizers of Seifert fibered spaces. For the reader’s con-
venience we recall the results of Jaco—Shalen and Johannson. Let N be
a Seifert fibered 3-manifold with a given Seifert fiber structure. Then
there exists a projection map p: N — B where B is the base orbifold.
We denote by B’ — B the orientation cover, note that this is either
the identity or a 2-fold cover. Following [6] we refer to p;!(m(B’)) as
the canonical subgroup of w(N). If f is a regular fiber of the Seifert
fibration, then we refer to the subgroup of 71 (/N) generated by f as
the fiber subgroup. Recall that if N is non-spherical, then the fiber
subgroup is infinite cyclic and normal. (Note that the fact that the
fiber subgroup is normal implies in particular that it is well-defined,
and not just up to conjugacy.)

Remark. Note that the definition of the canonical subgroup and of the
fiber subgroup depend on the Seifert fiber structure. By [10, Theo-
rem 3.8] (see also [9] and [6, 11.4.11]) a Seifert fibered 3-manifold N
admits a unique Seifert fiber structure unless N is either covered by
53,52 x R, or the 3-torus, or N = S' x D? or if N is an I-bundle over
the torus or the Klein bottle.

The following theorem, together with Theorem 1.1, now classifies
centralizers of non-spherical 3-manifolds.

Theorem 1.2. Let N be a non-spherical Seifert fibered 3-manifold with
a giwen Seifert fiber structure. Let g € m = m(N) be a non-trivial
element. Then the following hold:

(1) if g lies in the fiber group, then Cr(g) equals the canonical sub-
group,

(2) if g does not lie in the fiber group, then the intersection of Cr(g)
with the canonical subgroup is abelian, in particular C(g) ad-
mits an abelian subgroup of index at most two,

(3) if g does not lie in the canonical subgroup, then Cr(g) is infinite
cyclic.

The first statement is [6, Proposition 11.4.5]. The second and the
third statement follow from [6, Proposition 11.4.7]. Using Theorems
1.1 and 1.2 one can now immediately obtain results on root structures
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and the divisibility of elements in 3-manifold groups. We refer to [1,
Section 4] for details.

Acknowledgment. We would like to thank Matthias Aschenbrenner,
Saul Schleimer, Stephan Tillmann and Henry Wilton for helpful con-
versations.

2. GRAPHS OF GROUPS

In this section we summarize some basic definitions and facts con-
cerning graphs of groups and their fundamental groups. We refer to
2, 3, 11] for missing details.

2.1. Graphs. A graph Y consists of a set V = V())) of vertices and
aset £ = E()) of edges, and two maps E — V x V: e — (o(e),t(e))
and F — FE: e — e, subject to the following condition: for each e € £
we have € = e, € # e, and o(e) = t(€). We sometimes also denote € by
e~!. Throughout this paper, all graphs are understood to be connected
and finite (i.e., their vertex sets and edge sets are finite).

2.2. The fundamental group of a graph of groups. Let ) be a
graph. A graph G of groups based on ) consists of families {G, }yev(y)
and {Ge}ecp(y) of groups satisfying G. = Gz for every e € E(Y),
together with a family {@e}ecr(y) of monomorphisms ¢.: Ge — Gy
(e € E(Y)). We will refer to Y as the underlying graph of G.

Let G be a graph of groups based on a graph ). We recall the
construction of the fundamental group G = m(G) of G from [11, 1.5.1].
First, consider the path group w(G) which is generated by the groups
G, (v € V(Y)) and the elements e € E()) subject to the relations

epe(g)e =welg) (e € E(Y),g€G.).

By a path in Y from a vertex v to a vertex w we mean a sequence
(€1,€9,...,e,) where o(e;) = v,t(e;) = o(ej1),i = 1,...,n — 1 and
t(en,) = w.

By a path in G from a vertex v to a vertex w we mean a sequence

(907617917627 SRR enugn)a

of elements in E where (e, ..., e,) is a path of length n in ) from v to
w and where gy € G, and where g; € Gy, for i = 1,...,n. We write
[(7) = n and call it the length of v. We say that the path v represents
the element

g = g06191€2 e engn

of 7(G).



4 STEFAN FRIEDL

Let now w be a fixed vertex of J. We will refer to a path from
w to w as a loop based at w. The fundamental group (G, w) of G
(with base point w) is defined to be the subgroup of 7(G) consisting
of elements represented by loops based at w. If w’ € V())) is another
base point, and ¢ is an element of 7(G) represented by a path from
w’ to w, then 7(G,w') = 7 (G, w): t — g 'tg is an isomorphism. By
abuse of notation we write m;(G) to denote m (G, w) if the particular
choice of base point is irrelevant.

Now let v € V. Pick a path g from v to w. Then the map G, —
m1(G, w) given by t — g~ 'tg defines a group morphism which is injective
(see again [11, 1.5.2, Corollary 1]). In particular the vertex groups
define subgroups of 7 (G, w) which are well-defined up to conjugation.
Given a graph of groups G and a base vertex w it is always understood
that for each vertex v we picked once and for all a path from v to w.

We will later on make use of the following operations on paths. Given
a path p in G from v; to vy we write o(p) = vy and t(p) = ve. Given
two paths

p = (go,€1,91,€2,---,€n, gn), and
q = (ho, fi,h1, fay ooy fny hum),
with t(p) = o(q) we define

p*q:=(go,€1,91,€2, - €n Gn - ho, f1, 0, f2, ., fins hun)
which is a path from o(p) to t(¢q). Furthermore, given a path

p = (90, €1,91,€2,. .. 7enagn)

we define the inverse path to be

p =901 e g0 )

Note that p~! is a path from ¢(p) to o(p).

2.3. Reduced paths. A path (go,€1,91,€2, ..., €n,gn) in G is reduced
if it satisfies one of the following conditions:

(1) n=0, or

(2) n >0 and g; ¢ ¢, (Ge,) for each index ¢ such that e;1; = €.
Given g € 7(G) we define its length (g) to be the length of a reduced
path representing it. Note that this is well-defined (see [11, p. 4]), i.e.
any ¢ is represented by a reduced path and the definition is independent
of the choice of the reduced path. Also note that

[(g) = min{l(p) | p a path which represents g}.

Note that [(g) = 0 if and only if g lies in G, for some v € V.
We say that s = (go, €1, 91,62, -, €n, gn) 18 cyclically reduced if s is
reduced and if one of the following holds:
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(1) n=0, or
(2) e1 # 7 o0
(3) e; =€, but g,go is not conjugate to an element in Im(ep,, ).

Note that a reduced loop s = (go, €1, 91, €2, - - -, €n, gn) is cyclically re-
duced if and only if the element it represents has minimal length in its
conjugacy class in the path group 7(G).

We say that g € m1(G,w) is cyclically reduced if there exists a cycli-
cally reduced loop which represents it. It is straightforward to see that
g is cyclically reduced if and only if any reduced loop representing it
is cyclically reduced. Also note that if g is cyclically reduced, then
l(g") =n-1l(g).

Any element g of the path groups 7(G) is conjugate in 7(G) to a
cyclically reduced element s, we can thus define cl(g) = I(s). Note
that this is independent of the choice of s. Note that if g is cyclically
reduced, then a straightforward argument shows that I(¢") = n - l(g).
In particular given any g we have cl(g") = n - cl(g).

3. FUNDAMENTAL GROUPS OF 3-MANIFOLDS

In the next two sections we cover properties of fundamental groups
of hyperbolic 3-manifold groups and of Seifert fibered spaces, before we
return to the study of 3-manifold groups in general.

3.1. Fundamental groups of hyperbolic 3-manifolds. Let N be
a 3-manifold. We say that NV is hyperbolic if the interior admits a
complete metric of finite volume and constant sectional curvature equal
to —1.

Throughout this section we write

U:= {(8 g) with e € {—1,1} and a € (C} C SL(2,C).

Note that U is an abelian subgroup of SL(2,C). Recall that A €
SL(2,C) is called parabolic if it is conjugate to an element in U. We
say that A is lozodromic if A is diagonalizable with eigenvalues A\, A\~*
such that |[A\| > 1. We recall the following well known proposition.

Proposition 3.1. Let N be a hyperbolic 3-manifold. Then the follow-
ing hold:

(1) There exists a faithful discrete representation p: m(N) — SL(2,C).

(2) Let g € m(N), then p(g) is either parabolic or lozodromic.
(3) An element g € m(N) is conjugate to an element in a boundary
component if and only if p(g) is parabolic.
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(4) Let T be a boundary torus, then there exists a matrix P €
SL(2,C) such that Pp(m(T))P~* C U.

(5) Let g € m(N). Then Cy(mi(N)) is either infinite cyclic or a
free abelian group of rank two. The latter case occurs precisely
when g 1s conjugate to an element in a boundary component T
and in that case Cy(m1(N)) is a conjugate of m(T).

We include the proof of the proposition for completeness’ sake.

Proof. (1) A hyperbolic 3-manifold N admits a faithful discrete rep-
resentation w1 (N) — Isom(H?) = PSL(2, C). Thurston (see [12,
Section 1.6]) showed that this representation lifts to a faithful
discrete representation m (V) — SL(2, C).

(2) This follows immediately from considering the Jordan transform
of p(g) and from the fact that the infinite cyclic group generated
by p(g) is discrete in SL(2, C).

(3) This is well-known.

(4) This statement follows easily from the fact that m1(7") C SL(2,C)
is a discrete subgroup isomorphic to Z?2.

(5) By (1) we can view m = m1(N) as a discrete, torsion-free sub-
group of SL(2,C). Note that the centralizer of any non-trivial
matrix in SL(2, C) is abelian (this can be seen easily using the
Jordan normal form of such a matrix). Now let ¢ € © C
SL(2,C) be non-trivial. Since 7 is torsion-free and discrete in
SL(2,C) it follows easily that C,(g) is in fact either infinite
cyclic or a free abelian group of rank two. It now follows from
[13, Proposition 5.4.4] (see also [10, Corollary 4.6] for the closed
case) that there exists a boundary component S and h € m;(N)
such that

Cr(g) = hm (S)h™1.
O

Given a group 7 we say that an element g is divisible by an integer
n if there exists an h € m with g = h". We say g is infinitely divisible
if g is divisible by infinitely many integers. The following lemma is an
immediate consequences of Proposition 3.1 (5).

Lemma 3.2. Let 7 C SL(2,C) be a discrete torsion-free group. Then
does not contain any non-trivial elements which are infinitely divisible.

Let m be a group. We say that a subgroup H C 7 is division closed
if for any g € m and n > 0 with ¢g" € H the element g already lies in H.
The following lemma is an immediate consequence of Proposition 3.1
(2) and (5) and from the observation that A C SL(2,C) is parabolic
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(respectively loxodromic) if and only if a non-trivial power of A is
parabolic (respectively loxodromic).

Lemma 3.3. Let N be a 3-manifold such that the interior of N s a
hyperbolic 3-manifold of finite volume. Let T be a boundary component
of N. Then m(T) C m(N) is division closed.

Let 7 be a group. We say that a subgroup H is malnormal if gHg™'N
H is trivial for any g ¢ H. The following lemma is well-known.

Lemma 3.4. Let N be a hyperbolic 3-manifold.

(1) Let T be a boundary torus. Then 7 (T) C 7 (N) is malnormal.
(2) Let Ty and T, be distinct boundary tori. Then for any g € w1 (N)
we have w1 (Th) N gm(Ty)g~' = {e}.

3.2. Fundamental groups of Seifert fibered manifolds. Let N
be a Seifert fibered space with regular fiber c. First note that if T is
a boundary torus, then the Seifert fibration restricted to 7" induces a
product structure. It follows that ¢ € m(7T") and that c¢ is indivisible in
1 (T) = Z2.

The following results summarize the key properties of fundamental
groups of Seifert fibered spaces which are relevant to our discussion.

Theorem 3.5. Let N be a Seifert fibered 3-manifold with regular fiber
c. Then there exists an s € N with the following property: If T s
a boundary component, and if g & m(T) but some power of g lies in
71 (T), then there exists d < s such that g% = ¢ or g% = ¢71.

Proof. Let N be a Seifert fibered 3-manifold with boundary. Let s be
the maximum order of a singular fiber of the fibration. Let 7" be a
boundary component, and let g & 71(7") such that some power of ¢ lies
in 71 (7). We denote by p : N — B the projection to the base orbifold.
We denote by b the boundary curve of B corresponding to T'. Note
that p(g) & (b) but a power of p(g) lies in (b). It follows easily from 6,
Remark I1.3.1] that p(g) is of finite order. In particular g corresponds
to a singular fiber, and then it follows from the definition of s that
there exists a d < s such that ¢¢ = c or g% = ¢ 0

Lemma 3.6. Let N be a Seifert fibered 3-manifold with regular fiber
c and let T be a boundary component. Let g € m(T) which is not a
power of ¢, then Cy(m1(N)) = m(T).

Proof. We denote by p : N — B the projection to the base orbifold.
Note that p(g) € m(B) is non-trivial. It follows easily from [6, Re-
mark I1.3.1] that Cy, (71 (B)) is the group generated by the boundary

curve of N corresponding to T'. It follows easily that Cy(m(N)) =
T (T) U
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The following lemma is also well-known. It can be proved in a similar
fashion as Lemma 3.6 by considering the equivalent problem in the
fundamental group of the base manifold.

Lemma 3.7. Let N be a Seifert fibered 3-manifold. Denote by ¢ €
m1(N) the element represented by a regular fiber.
(1) Let T be a boundary torus and g € m(N)\ m(T), then m (1) N
gmi(T)g™" = ().
(2) Let Ty and T, be distinct boundary tori. Then for any g € w1 (N)
we have 71 (Th) N gmi(Ty)g™ = (c).

We conclude with the following lemma.

Lemma 3.8. Let N be a non-spherical Seifert fibered manifold. Then
m1(N) does not contain non-trivial elements which are infinitely divis-
wble.

Proof. Let N be a Seifert fibered manifold. Then there exists a finite
cover N’ which is an S'-bundle over a surface S (see e.g. [5, p. 391]
for details). We write I' = m;(S), 7 = m(N) and 7’ = 7 (N'). If N is
non-spherical then the long exact sequence in homotopy implies that
there exists a short exact sequence

12Z -1 —>T—>1.

Since Z and T" are well-known not to admit any non-trivial infinitely
divisible elements, it follows easily that 7’ does not admit a non-trivial
infinitely divisible element. We write n = [r : #]. Since N is non-
spherical we know that 7 is torsion-free. Note that if ¢ € 7 is non-
trivial, then ¢" lies in #’ and it is also non-trivial. It is now easy
to see that m can not admit a non-trivial infinitely divisible element
either. U

3.3. 3-manifolds and graphs of groups. In this section we recall
the well-known interpretation of 3-manifold groups as the fundamental
group of a graph of groups. Let N be an irreducible, closed, oriented 3-
manifold. Recall that the JSJ tori are a minimal collection {71, ..., T}}
of tori such that the complements of the tori are either atoroidal or
Seifert fibered.

We denote by G(N) the corresponding JSJ graph, i.e. the vertex
set V' = V/(G) of G consists of the set of components of N cut along
Ti,..., Ty pieces and the set ' = E(G) of (unoriented) edges consists
of the set of JSJ tori T1,...,T,. We sometimes denote the JSJ tori by
T.,e € F and we denote the components of N cut along U.cgT. by
N,,v € V. We equip each T, with an orientation, we thus obtain two
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canonical embeddings 74+ of T, into N cut along T,. We then denote
by o(e) € V the unique vertex with i_(7,) € Ny and we denote by
t(e) € V the unique vertex with i (7¢) € Ny(e).

Suppose that N has a non-trivial JSJ decomposition. Then given a
Seifert fibered component N, of the JSJ decomposition of N we denote
by ¢, € m(N,) the group element defined by a corresponding regular
fiber. Note that ¢, is well-defined up to inversion (see [14, Lemma 1]
or [4]).

We conclude this section with the following theorem.

Theorem 3.9. Let N be a closed, oriented 3-manifold. Denote by
G = G(N) the corresponding JSJ graph. If e is an edge such that o(e)
and t(e) correspond to Seifert fibered spaces, then ¢ (cye)) # cic(t).

Proof. If ¢ ' (cye)) was equal to c(jfé), then N,y and Ny, would have
Seifert fiber structures which (after an isotopy) match along the edge

torus. But this contradicts the minimality of the JSJ decomposition.
O

4. PROOF OF THE MAIN RESULTS

4.1. Divisibility in 3-manifold groups. We will first prove the fol-
lowing theorem.

Theorem 4.1. Let N be a 3-manifold. If N is not spherical, then
w1 (N) does not contain any non-trivial elements which are infinitely
divisible.

Proof. Let N be a non-spherical 3-manifold and let € 7 (V) be a non-
trivial element. Since the statement of theorem is independent of the
choice of base point and conjugation we can without loss of generality
assume that [(z) = cl(z). We write [ = I(z).

First suppose that [ > 0. Suppose we have y € m;(N) and n such
that y” = x. Note that 0 < cl(z) = cl(y") = n - cl(y). It now follows
immediately that n <[ = cl(z).

Now suppose that [ = 0. Note that this means that x lies in a vertex
group m1(N,). We now define

d :=max{n € N|z = y" for some y € m;(N,)}.

Note that d < oo by Lemmas 3.2 and 3.8. Furthermore, given a Seifert
fibered component N, we define

s, := maximum of the orders of the singular fibers of N,,.
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Finally we define s to be the maximum over all s,. If there are no
Seifert fibered components, then we set s = 1. The following claim
now implies the theorem.

Claim. If there exists y € m1(N) and n € N with ¢y = x, then n < ds.

Suppose we have y € m(N) and n such that y* = z. Note that
0=1I(z) =cl(z) =c(y") =n-cl(y). It now follows that cl(y) = 0. If
[(y) =0, then y € m(N,), hence the conclusion holds trivially by the
definition of d. Now suppose that {(y) > 0. Then there exists a reduced
path p = (go,€1,01,- -, €, ) from w to a vertex v and z € m(1V,) such
that y is represented by p* z % p~!. Among all such pairs (p, z) we pick
a pair which minimizes the length of p.

Since p is minimal and [(p) > 0 we see that g;zg; " & Im(i,,). On the
other hand p * 2™ * p~! represents ™ = x, hence this path is reduced,
which implies that g;z"g; ' € Im(y,,). It follows that Im(yp,,) is not
division closed, using Lemma 3.3 we conclude that N, is Seifert fibered.

We denote by ¢, the regular fiber of NV,. Recall that by Theorem 3.5
there exists r|s, with ¢2"g, L' — ¢,. It also follows from Theorem 3.5
that g;2"g; ' = ¢ € Im(yp,,) for some m. Note that n = mr.

We can now apply Lemmas 3.4 and 3.7, Theorem 3.9 and the fact
that p is reduced to conclude that

(907 €1,91,---,€-1, gl—lSOe_ll(C:;n)gl_—lh el_—lla s 791_17 61_17 g(]_l)
is reduced. It follows that [ = 1. Note that

z = gove, ()90 = (9ove, (cv)go )™
It follows that m < d. We also have r < s, < 5. We now conclude that

n=mr < ds.
O

4.2. Commuting elements in 3-manifold groups.

Theorem 4.2. Let N be a 3-manifold. Let x,y € m(N) with z =
yry~t. Then one of the following holds:
(1)  and y generate a cyclic group in w1 (N), or
(2) there exists a JSJ torus T such that x and y lie in a conjugate
of m(T) C m(N), or
(3) there exists a Seifert fibered component M of the JSJ decompo-
sition such that x and y lie in a conjugate of m (M) C 7 (N).

Proof. Let N be a 3-manifold. Denote by G = G(N) the corresponding
JSJ graph with vertex set V' and edge set E. We denote by w € V
the vertex which contains the base point of N. We denote the vertex
groups by G, = m(N,),v € V.
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The theorem holds trivially for Seifert fibered spaces, we can there-
fore assume that N is not a Seifert fibered space, in particular that N
is not spherical. Suppose we have z,y € m(N) with z = yzy~!. By
the symmetry of x and y we can without loss of generality assume that
cl(z) < cl(y). Note that the statement of the theorem does not change
under conjugation and change of base point, we can therefore without
loss of generality assume that cl(z) = [(z).

We represent y by a reduced loop p = (ho, fi1, h1,- .., fi—1, i1, fi, )
based at w. If [ = 0, then [(x) = 0 as well since () = cl(x) < cl(y) <
l(y) = 0. In that case we are done by Proposition 3.1 (5). We thus
henceforth only consider the case that [ > 1.

After conjugating  and y with h; we can without loss of generality
assume that h; = 1. Recall that p being reduced implies that for
1=2,...,l the following holds:

(4'1) fi # K or fi = E and h;—1 & Im(SOfifl)'

We first study the case that [(z) = 0, i.e. z € G,. Clearly we can
assume that z is non-trivial.
Now consider

p*x*p_l - (h07f17h17"‘7flax7flilﬂ"'7h’1_17f1_17h61)'

This path is not reduced since yxy~' can be represented by a path

of length zero. It follows that x € Im(pys). We can now represent
x = yxy~! by the following path:

(42) (hOa f17 hla R fl—17 hl—l(p;ll(m)h[_fllyfl_,ll) R hl_la f1_17h(;1)'

Case 1: 1 = 1,i.e. y = (hg, f1,1). In that case yry~' = x is represented
by hogpzl(x)hal. It follows that x € Im(py,) and = € hyg Im(gpffl)hgl.
But if t(f1) = o(f1) is hyperbolic this is not possible by Lemma 3.4 since
the two boundary tori of Nyy) = Ny, corresponding to the edge fi
are obviously different. If t(f;) = o(f1) is Seifert fibered, then we can
similarly exclude this case by appealing to Lemma 3.7 and Theorem
3.9.

Case 2: The vertex o(f;) is hyperbolic. It follows easily from (4.1) and
Lemma 3.4 that the path (4.2) is reduced. Since the path represents x
this implies in particular that [ = 1. We thus reduced Case 2 to Case
1.

Case 3: The vertex o f;) is Seifert fibered and go;ll(x) Z (co(s,)). Note
that Lemma 3.7 together with Theorem 3.9 and (4.1) implies that the
path (4.2) is reduced, i.e. [ = 1. We thus also reduced Case 3 to Case
1.
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Case 4: The vertex o(f;) is Seifert fibered, ¢} '(z) € (co(s,)) and [ >
1. Note that by Theorem 3.5 (2) this implies that hl_lgozl(:v)hl_fl €
Im(py,_,). We can thus represent x by

(h07 f17 Ty fl—2> hl—? : SOJTLil (hl—lgpzl(x)hﬁll) : h;127 f11127 ey f1_17 hal)

If o( f;—1) is hyperbolic, then the argument of Case 2 immediately shows

that I = 2. If o( fj_1) is Seifert fibered, then it follows from Theorems 3.5

and 3.9 and from Lemma 3.7 (2) that hl_g-gpfl: (le_lgpfll(x)izl__ll)-hl__l2 4

(Co(f,_1))- The argument of Case 3 immediately shows that again [ = 2.
We now showed that [ = 2, we thus see that x equals

ho - 5" (hiagy ()b ) - by

If o(f1) = t(f2) is hyperbolic, then z € Im(py,) and x € hy Inl(@iT)hgl.
It follows from Lemma 3.4 that f; = f, and hy € Im(pg). If we
change the base point to o(fy) = t(f1) we see that z is represented
by gog(x) € Go(,) and y is represented by ¢ (ho)hy € Goy). If on
the other hand o(f1) = t(fa2) is Seifert fibered, then it follows from
Theorem 3.9 that x & (cys,)). It now follows easily from Lemma 3.7

that fi = fo and hg € Im(apffl). We conclude the argument as above.

We now turn to the case that [(z) > 0. We claim that Conclusion
(1) holds. By Theorem 4.1 we can find z € m;(N) which is indivisible
and n > 0 with x = 2". Without loss of generality assume that z is
cyclically reduced. We claim that y is a power of z as well. We represent
z by a reduced loop ¢ = (go,€1,91,---, €k gr). We now consider the
path p x ¢" * p~! which is given by

(h07f17h17 S 7flahl *490,€1,915- -5 €k, Gk - hl_lafl_17 <. '7h1_1a flahal)'

This loop has to be reduced since [ > 0 and therefore the loop is longer
than the loop ¢" which represents the same element. We conclude that
one of the following conditions hold:

(1) fi="¢1 and hgo € Im(py,), or

(2) e, = fi and gph; ' € Im(p,, ).
Note though that not both conclusions can hold, otherwise x would
not be cyclically reduced. Now suppose that (1) holds and (2) does not
hold. A straightforward induction argument now shows that p = p’*q*
for some reduced path p’. On the other hand, if (2) holds and (1)
does not hold, then a straightforward induction argument shows that
p=q ' *p for some reduced path p'.

Claim. If I[(p') = 0, then p’ represents the trivial element.
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If I(p') = 0, then we denote by y' the element represented by p'.
Suppose that ' is non-trivial. In that case we have y'2"(y')™' = 2"
for any n, in particular x"y’x~" = y'. It follows from the discussion of
Cases 1, 2, 3 and 4 above that [(2™) < 2 for any n. Since x is cyclically
reduced and I(z) > 0 this case can not occur. This concludes the proof
of the claim.

If p' represents the trivial element we are clearly done. If not, then
[(p') > 0 and we can do an induction argument on the length of p’ to
show that y is in fact a power of z. O

4.3. Proof of Theorem 1.1. For the reader’s convenience we recall
the statement of Theorem 1.1.

Theorem 4.3. Let N be a 3-manifold. We write m = m(N). Let
g € m. If Cr(g) is non-cyclic, then one of the following holds:

(1) there exists a JSJ torus or a boundary torus T and h € 7 such
that g € hmy(T)h™" and such that

Cﬁ(g) = hﬂ'l (T)h_l,

(2) there exists a Seifert fibered component M and h € w such that
g € hry(M)h™ and such that

Cr(9) = hCryany (™ gh)R™".

Proof. Let N be a 3-manifold and let ¢ € 7 = m (V). If for any
h € C:(g) the group generated by g and h is cyclic, then either Cy(g)
is cyclic, or g is infinitely divisible. Since the former case is excluded
by Theorem 4.1 the latter case has to hold.

Now suppose that C,(g) is not cyclic and suppose that there exist
an h € C;(g) such that the group generated by g and h is not cyclic. It
follows from Theorem 4.2 that one of the following three cases occurs:

(1) there exists a JSJ torus T such that g lies in a conjugate of
7T1(T) C 7T1(N),
(2) there exists a Seifert fibered component M of the JSJ decom-
position such that g lies in a conjugate of w1 (M) C m (),
First suppose there exists a JSJ torus 7" such that g lies in a conjugate
of m(T) C m(N). Without loss of generality we can assume that
g € m(T). We first consider the case that the two JSJ components
abutting T are different. We denote these two components by M; and
M,. By Proposition 3.1 (5) the following claim implies the theorem in
this case.

Claim. There exists an ¢ € {1,2} such that
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Let h € Cr(g). It follows easily from the proof of Theorem 4.2 that
either h € m (M) or h € m(Ms). If M, is hyperbolic, then it follows
from Lemma 3.2 and from Proposition 3.1 (5) that h € m(T). It
follows that Cx(g) = Cr,(m,)(g). Similarly we deal with the case that
M, is hyperbolic. Finally assume that M; and M, are Seifert fibered.
We denote by ¢; and ¢y the regular fibers of My and M. If ¢ is not a
power of ¢y, then it follows from Lemma 3.6 that Cr(g) = Cr,(m)(9),
similarly if g is not a power of c;. Recall that ¢; and ¢y are indivisible
in 7 (T) and that by Theorem 3.9 we have ¢; # c¢3'. It follows that g
is either not a power of ¢; or not a power of cs.

The case that the torus is non-separating can be dealt with similarly.
We leave this to the reader. Also, if there exists a Seifert fibered com-
ponent M of the JSJ decomposition such that g lies in a conjugate of
m1 (M) C m1(N) and such that g does not lie in the image of a boundary
torus, then it follows easily from the proof of Theorem 4.2 that

Cx(9) = Cryan)(9)-
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